Anatomy (Scholarly Articles)

Permanent URI for this collection

Browse

Recent Submissions

  • Publication
    Neuroanatomical dysconnectivity underlying cognitive deficits in bipolar disorder
    (Elsevier, 2019-09-18) McPhilemy, Genevieve; Nabulsi, Leila; Kilmartin, Liam; O’Hora, Denis; O’Donoghue, Stefani; Tronchin, Giulia; Costello, Laura; Najt, Pablo; Ambati, Srinath; Neilsen, Gráinne; Creighton, Sarah; Byrne, Fintan; McLoughlin, James; McDonald, Colm; Hallahan, Brian; Cannon, Dara M.; Health Research Board
    BACKGROUND: Graph theory applied to brain networks is an emerging approach to understanding the brain's topological associations with human cognitive ability. Despite well-documented cognitive impairments in bipolar disorder (BD) and recent reports of altered anatomical network organization, the association between connectivity and cognitive impairments in BD remains unclear.METHODS: We examined the role of anatomical network connectivity derived from Ti - and diffusion-weighted magnetic resonance imaging in impaired cognitive performance in individuals with BD (n = 32) compared with healthy control individuals (n = 38). Fractional anisotropy- and number of streamlines-weighted anatomical brain networks were generated by mapping constrained spherical deconvolution-reconstructed white matter among 86 cortical/subcortical bilateral brain regions delineated in the individual's own coordinate space. Intelligence and executive function were investigated as distributed functions using measures of global, rich-club, and interhemispheric connectivity, while memory and social cognition were examined in relation to subnetwork connectivity.RESULTS: Lower executive functioning related to higher global clustering coefficient in participants with BD, and lower IQ performance may present with a differential relationship between global and interhemispheric efficiency in individuals with BD relative to control individuals. Spatial recognition memory accuracy and response times were similar between diagnostic groups and associated with basal ganglia and thalamus interconnectivity and connectivity within extended anatomical subnetworks in all participants. No anatomical subnetworks related to episodic memory, short-term memory, or social cognition generally or differently in BD.CONCLUSIONS: Results demonstrate selective influence of subnetwork patterns of connectivity in underlying cognitive performance generally and abnormal global topology underlying discrete cognitive impairments in BD.
  • Publication
    Bipolar disorder and gender are associated with frontolimbic and basal ganglia dysconnectivity: A study of topological variance using network analysis
    (Mary Ann Liebert, 2019-12-16) Nabulsi, Leila; McPhilemy, Genevieve; Kilmartin, Liam; O'Hora, Denis; O'Donoghue, Stefani; Forcellini, Giulia; Najt, Pablo; Ambati, Srinath; Costello, Laura; Byrne, Fintan; McLoughlin, James; Hallahan, Brian; McDonald, Colm; Cannon, Dara M.; Irish Research Council; Health Research Board
    Well-established structural abnormalities, mostly involving the limbic system, have been associated with disorders of emotion regulation. Understanding the arrangement and connections of these regions with other functionally specialized cortico-subcortical subnetworks is key to understanding how the human brain's architecture underpins abnormalities of mood and emotion. We investigated topological patterns in bipolar disorder (BD) with the anatomically improved precision conferred by combining subject-specific parcellation/segmentation with nontensor-based tractograms derived using a high-angular resolution diffusion-weighted approach. Connectivity matrices were constructed using 34 cortical and 9 subcortical bilateral nodes (Desikan-Killiany), and edges that were weighted by fractional anisotropy and streamline count derived from deterministic tractography using constrained spherical deconvolution. Whole-brain and rich-club connectivity alongside a permutation-based statistical approach was used to investigate topological variance in predominantly euthymic BD relative to healthy volunteers. BP patients (n=40) demonstrated impairments across whole-brain topological arrangements (density, degree, and efficiency), and a dysconnected subnetwork involving limbic and basal ganglia relative to controls (n=45). Increased rich-club connectivity was most evident in females with BD, with frontolimbic and parieto-occipital nodes not members of BD rich-club. Increased centrality in females relative to males was driven by basal ganglia and fronto-temporo-limbic nodes. Our subject-specific cortico-subcortical nontensor-based connectome map presents a neuroanatomical model of BD dysconnectivity that differentially involves communication within and between emotion-regulatory and reward-related subsystems. Moreover, the female brain positions more dependence on nodes belonging to these two differently specialized subsystems for communication relative to males, which may confer increased susceptibility to processes dependent on integration of emotion and reward-related information.
  • Publication
    Frontolimbic, frontoparietal, and default mode involvement in functional dysconnectivity in psychotic bipolar disorder
    (Elsevier, 2019-11-11) Nabulsi, Leila; McPhilemy, Genevieve; Kilmartin, Liam; Whittaker, Joseph R.; Martyn, Fiona M.; Hallahan, Brian; McDonald, Colm; Murphy, Kevin; Cannon, Dara M.; Irish Research Council; Health Research Board
    BACKGROUND: Functional abnormalities, mostly involving functionally specialized subsystems, have been associated with disorders of emotion regulation such as bipolar disorder (BD). Understanding how independent functional subsystems integrate globally and how they relate with anatomical cortical and subcortical networks is key to understanding how the human brain's architecture constrains functional interactions and underpins abnormalities of mood and emotion, particularly in BD.METHODS: Resting-state functional magnetic resonance time series were averaged to obtain individual functional connectivity matrices (using AFNI software); individual structural connectivity matrices were derived using deterministic non-tensor-based tractography (using ExploreDTI, version 4.8.6), weighted by streamline count and fractional anisotropy. Structural and functional nodes were defined using a subject-specific cortico-subcortical mapping (using Desikan-Killiany Atlas, FreeSurfer, version 5.3). Whole-brain connectivity alongside a permutation-based statistical approach and structure-function coupling were employed to investigate topological variance in individuals with predominantly euthymic BD relative to psychiatrically healthy control subjects.RESULTS: Patients with BD (n = 41) exhibited decreased (synchronous) connectivity in a subnetwork encompassing frontolimbic and posterior-occipital functional connections (T > 3, p = .048), alongside increased (antisynchronous) connectivity within a frontotemporal subnetwork (T > 3, p = .014); all relative to control subjects (n = 56). Preserved whole-brain functional connectivity and comparable structure-function coupling among whole-brain and edge-class connections were observed in patients with BD relative to control subjects.CONCLUSIONS: This study presents a functional map of BD dysconnectivity that differentially involves communication within nodes belonging to functionally specialized subsystems-default mode, frontoparietal, and frontolimbic systems; these changes do not extend to be detected globally and may be necessary to maintain a remitted clinical state of BD. Preserved structure-function coupling in BD despite evidence of regional anatomical and functional deficits suggests a dynamic interplay between structural and functional subnetworks.
  • Publication
    Lentiviral vector‐mediated knockdown of the neuroglycan 2 proteoglycan or expression of neurotrophin‐3 promotes neurite outgrowth in a cell culture model of the glial scar
    (Wiley, 2010) Donnelly, Eleanor M.; Strappe, Padraig M.; McGinley, Lisa M.; Madigan, Nicolas N.; Geurts, Elizabeth; Rooney, Gemma E.; Windebank, Anthony J.; Fraher, John; Dockery, Peter; O'Brien, Timothy; McMahon, Siobhan S.
    Background Following spinal cord injury, a highly inhibitory environment for axonal regeneration develops. One of the main sources of this inhibition is the glial scar that is formed after injury by reactive astrocytes. The inhibitory environment is mainly a result of chondroitin sulphate proteoglycans (CSPGs). Neuroglycan 2 (NG2), one of the main inhibitory CSPGs, is up-regulated following spinal cord injury.Methods Small interfering RNA (siRNA) was designed to target NG2 and this short hairpin RNA (shRNA) was cloned into a lentiviral vector (LV). The neurotrophic factor neurotrophin-3 (NT-3) promotes the growth and survival of developing neurites and has also been shown to aid regeneration. NT-3 was also cloned into a LV. In vitro assessment of these vectors using a coculture system of dorsal root ganglia (DRG) neurones and Neu7 astrocytes was carried out. The Neu7 cell line is a rat astrocyte cell line that overexpresses NG2, thereby mimicking the inhibitory environment following spinal cord injury.Results and Discussion These experiments show that both the knockdown of NG2 via shRNA and over-expression of NT-3 can significantly increase neurite growth, although a combination of both vectors did not confer any additional benefit over the vectors used individually. These LVs show promising potential for growth and survival of neurites in injured central nervous system tissue (CNS). Copyright (C) 2010 John Wiley & Sons, Ltd.
  • Publication
    Effect of cyclosporin A on functional recovery in the spinal cord following contusion injury
    (Wiley, 2009-08-20) McMahon, Siobhan S.; Albermann, Silke; Rooney, Gemma E.; Moran, Cathal; Hynes, Jacqueline; Garcia, Yolanda; Dockery, Peter; O’Brien, Timothy; Windebank, Anthony J.; Barry, Frank P.
    Considerable evidence has shown that the immunosuppressant drug cyclosporin A (CsA) may have neuroprotective properties which can be exploited in the treatment of spinal cord injury. The aim of this study was to investigate the cellular environment within the spinal cord following injury and determine whether CsA has an effect on altering cellular interactions to promote a growth-permissive environment. CsA was administered to a group of rats 4 days after they endured a moderate contusion injury. Functional recovery was assessed using the Basso Beattie Bresnahan (BBB) locomotor rating scale at 3, 5 and 7 weeks post-injury. The rats were sacrificed 3 and 7 weeks post-injury and the spinal cords were sectioned, stained using histological and immunohistochemical methods and analysed. Using stereology, the lesion size and cellular environment in the CsA-treated and control groups was examined. Little difference in lesion volume was observed between the two groups. An improvement in functional recovery was observed within CsA-treated animals at 3 weeks. Although we did not see significant reduction in tissue damage, there were some notable differences in the proportion of individual cells contributing to the lesion. CsA administration may be used as a technique to control the cell population of the lesion, making it more permissive to neuronal regeneration once the ideal environment for regeneration and the effects of CsA administration at different time points post-injury have been identified.
  • Publication
    Lentiviral vector delivery of short hairpin RNA to NG2 and neurotrophin-3 promotes locomotor recovery in injured rat spinal cord
    (Elsevier, 2012-01-08) Donnelly, Eleanor M.; Madigan, Nicolas N.; Rooney, Gemma E.; Knight, Andrew; Chen, Bingkun; Ball, Bret; Kinnavane, Lisa; Garcia, Yolanda; Dockery, Peter; Fraher, John; Strappe, Padraig M.; Windebank, Anthony J.; O'Brien, Timothy; McMahon, Siobhan S.
    Background aims. In this study we investigated the effect of neurotrophin-3 (NT-3) and knockdown of NG2, one of the main inhibitory chondroitin sulfate proteoglycans (CSPG), in the glial scar following spinal cord injury (SCI). Methods. Short hairpin (sh) RNA were designed to target NG2 and were cloned into a lentiviral vector (LV). A LV was also constructed containing NT-3. LV expressing NT-3, shRNA to NG2 or combinations of both vectors were injected directly into contused rat spinal cords 1 week post-injury. Six weeks post-injection of LV, spinal cords were examined by histology for changes in scar size and by immunohistochemistry for changes in expression of CSPG, NT-3, astrocytes, neurons and microglia/macrophages. Motor function was assessed using the Basso, Beattie and Bresnahan (BBB) locomotor scale. Results. Animals that received the combination treatment of LV shNG2 and LV NT-3 showed reduced scar size. These animals also showed an increase in levels of neurons and NG2, a decrease in levels of astrocytes and a significant functional recovery as assessed using the BBB locomotor scale at 2 weeks post-treatment. Conclusions. The improvement in locomotor recovery and decrease in scar size shows the potential of this gene therapy approach as a therapeutic treatment for SCI.
  • Publication
    Engraftment, migration and differentiation of neural stem cells in the rat spinal cord following contusion injury
    (Elsevier, 2012-12-20) McMahon, Siobhan S.; Albermann, Silke; Rooney, Gemma E.; Shaw, Georgina; Garcia, Yolanda; Sweeney, Eva; Hynes, Jacqueline; Dockery, Peter; O'Brien, Timothy; Windebank, Anthony J.; Allsopp, Timothy E.; Barry, Frank P.; Science Foundation Ireland
    Background aims. Spinal cord injury is a devastating injury that impacts drastically on the victim's quality of life. Stem cells have been proposed as a therapeutic strategy. Neural stem (NS) cells have been harvested from embryonic mouse forebrain and cultured as adherent cells. These NS cells express markers of neurogenic radial glia. Methods. Mouse NS cells expressing green fluorescent protein (GFP) were transplanted into immunosupressed rat spinal cords following moderate contusion injury at T9. Animals were left for 2 and 6 weeks then spinal cords were fixed, cryosectioned and analyzed. Stereologic methods were used to estimate the volume and cellular environment of the lesions. Engraftment, migration and differentiation of NS cells were also examined. Results. NS cells integrated well into host tissue and appeared to migrate toward the lesion site. They expressed markers of neurons, astrocytes and oligodendrocytes at 2 weeks post-transplantation and markers of neurons and astrocytes at the 6-week time-point. NS cells appeared to have a similar morphologic phenotype to radial glia, in particular at the pial surface. Conclusions. Although no functional recovery was observed using the Basso Beattie Bresnahan (BBB) locomotor rating scale, NS cells are a potential cellular therapy for treatment of injured spinal cord. They may be used as delivery vehicles for therapeutic proteins because they show an ability to migrate toward the site of a lesion. They may also be used to replace lost or damaged neurons and oligodendrocytes.
  • Publication
    Assembly of protein-based hollow spheres encapsulating a therapeutic factor
    (American Chemical Society, 2013-06-13) Kraskiewicz, Honorata; Breen, Bridget; Sargeant, Timothy; McMahon, Siobhan; Pandit, Abhay; IDA Ireland
    Neurotrophins, as important regulators of neural development, function and survival, have a therapeutic potential to repair damaged neurons. However, a controlled delivery of therapeutic molecules to injured tissue remains one of the greatest challenges facing the translation of novel drug therapeutics field. This study presents the development of an innovative protein-protein delivery technology of nerve growth factor (NGF) by an electrostatically assembled protein-based (collagen) reservoir system that can be directly injected into the injury site and provide long term release of the therapeutic. A protein-based biomimetic hollow reservoir system was fabricated using a template method. The capability of neurotrophins to localise in these reservoir systems was confirmed by confocal images of fluorescently labelled collagen and NGF. In addition, high loading efficiency of the reservoir system was proven using ELISA. By comparing release profile from microspheres with varying crosslinking, highly cross-linked collagen spheres were chosen as they have the slowest release rate. Finally, biological activity of released NGF was assessed using rat pheochromocytoma (PC12) cell line and primary rat dorsal root ganglion (DRG) cell bioassay where cell treatment with NGF-loaded reservoirs induced significant neuronal outgrowth, similar to that seen in NGF treated controls. Data presented here highlights the potential of a high capacity reservoir-growth factor technology as a promising therapeutic treatment for neuroregenerative applications and other neurodegenerative diseases.
  • Publication
    Comparison of cellular architecture, axonal growth, and blood vessel formation through cell-loaded polymer scaffolds in the transected rat spinal cord
    (Mary Ann Liebert, 2014-08-08) Madigan, Nicolas N.; Chen, Bingkun K.; Knight, Andrew M.; Rooney, Gemma E.; Sweeney, Eva; Kinnavane, Lisa; Yaszemski, Michael J.; Dockery, Peter; O'Brien, Timothy; McMahon, Siobhan S.; Windebank, Anthony J.
    The use of multichannel polymer scaffolds in a complete spinal cord transection injury serves as a deconstructed model that allows for control of individual variables and direct observation of their effects on regeneration. In this study, scaffolds fabricated from positively charged oligo[poly(ethylene glycol)fumarate] (OPF+) hydrogel were implanted into rat spinal cords following T9 complete transection. OPF+ scaffold channels were loaded with either syngeneic Schwann cells or mesenchymal stem cells derived from enhanced green fluorescent protein transgenic rats (eGFP-MSCs). Control scaffolds contained extracellular matrix only. The capacity of each scaffold type to influence the architecture of regenerated tissue after 4 weeks was examined by detailed immunohistochemistry and stereology. Astrocytosis was observed in a circumferential peripheral channel compartment. A structurally separate channel core contained scattered astrocytes, eGFP-MSCs, blood vessels, and regenerating axons. Cells double-staining with glial fibrillary acid protein (GFAP) and S-100 antibodies populated each scaffold type, demonstrating migration of an immature cell phenotype into the scaffold from the animal. eGFP-MSCs were distributed in close association with blood vessels. Axon regeneration was augmented by Schwann cell implantation, while eGFP-MSCs did not support axon growth. Methods of unbiased stereology provided physiologic estimates of blood vessel volume, length and surface area, mean vessel diameter, and cross-sectional area in each scaffold type. Schwann cell scaffolds had high numbers of small, densely packed vessels within the channels. eGFP-MSC scaffolds contained fewer, larger vessels. There was a positive linear correlation between axon counts and vessel length density, surface density, and volume fraction. Increased axon number also correlated with decreasing vessel diameter, implicating the importance of blood flow rate. Radial diffusion distances in vessels significantly correlated to axon number as a hyperbolic function, showing a need to engineer high numbers of small vessels in parallel to improving axonal densities. In conclusion, Schwann cells and eGFP-MSCs influenced the regenerating microenvironment with lasting effect on axonal and blood vessel growth. OPF+ scaffolds in a complete transection model allowed for a detailed comparative, histologic analysis of the cellular architecture in response to each cell type and provided insight into physiologic characteristics that may support axon regeneration.
  • Publication
    GDNF Schwann cells in hydrogel scaffolds promote regional axon regeneration, remyelination and functional improvement after spinal cord transection in rats
    (Wiley, 2017-03-10) Chen, Bingkun K.; Madigan, Nicolas N.; Hakim, Jeffrey S.; Dadsetan, Mahrokh; McMahon, Siobhan S.; Yaszemski, Michael J.; Windebank, Anthony J.; National Institutes of Health; Wilson, Morton and Mayo Foundations
    Positively-charged oligo[poly(ethylene glycol)fumarate] (OPF+) is a biodegradable hydrogel used for spinal cord injury repair. We compared scaffolds containing primary Schwann cells (SCs) to scaffolds delivering SCs genetically modified to secrete high concentrations of glial cell-derived neurotrophic factor (GDNF). Multichannel OPF+ scaffolds loaded with SCs or GDNF-SCs were implanted into transected rat spinal cords for 4 weeks. GDNF-SCs promoted regeneration of more axons into OPF+ scaffolds (2773.0 +/- 396.0) than primary SC OPF+ scaffolds (1666.0 +/- 352.2) (p = 0.0491). This increase was most significant in central and ventral-midline channels of the scaffold. Axonal remyelination was quantitated by stereologic analysis. Increased myelination of regenerating axons was observed in the GDNF-SC group. Myelinating cell and axon complexes were formed by host SCs and not by implanted cells or host oligodendrocytes. Fast Blue retrograde tracing studies determined the rostral-caudal directionality of axonal growth. The number of neurons that projected axons rostrally through the GDNF-SC scaffolds was higher (7929 +/- 1670) than in animals with SC OPF+ scaffolds (1069 +/- 241.5) (p
  • Publication
    Non-viral xylosyltransferase-1 siRNA delivery as an effective alternative to chondroitinase in an in vitro model of reactive astrocytes
    (Elsevier, 2016-10-13) Abu-Rub, Mohammad T.; Newland, Ben; Naughton, Michelle; Wang, Wenxin; McMahon, Siobhan; Pandit, Abhay; Science Foundation Ireland
    Reactive astrocytosis and the subsequent glial scar is ubiquitous to injuries of the central nervous system, especially spinal cord injury (SCI) and primarily serves to protect against further damage, but is also a prominent inhibitor of regeneration. Manipulating the glial scar by targeting chondroitin sulfate proteoglycans (CSPGs) has been the focus of much study as a means to improve axon regeneration and subsequently functional recovery. In this study we investigate the ability of small interfering RNA (siRNA) delivered by a non-viral polymer vector to silence the rate limiting enzyme involved in CSPG synthesis. Gene expression of this enzyme, xylosyltransferase-1, was silenced by 65% in Neu7 astrocytes which conferred a reduced expression of CSPGs. Furthermore, conditioned medium taken from treated Neu7s, or co-culture experiments with dorsal root ganglia (DRG) showed that siRNA treatment resulted in a more permissive environment for DRG neurite outgrowth than treatment with chondroitinase ABC alone. These results indicate that there is a role for targeted siRNA therapy using polymeric vectors to facilitate regeneration of injured axons following central nervous system injury. (C) 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
  • Publication
    Therapeutic effect of neurotrophin-3 treatment in an injectable collagen scaffold following rat spinal cord hemisection injury
    (American Chemical Society, 2016-08-01) Breen, Bridget A.; Kraskiewicz, Honorata; Ronan, Rachel; Kshiragar, Aniket; Patar, Azim; Sargeant, Timothy; Pandit, Abhay; McMahon, Siobhan S.; Covidien LLC; IDA Ireland; Seventh Framework Programme; Science Foundation Ireland
    Spinal cord injury (SCI) patients display varying quantities of spinal cord tissue damage with injuries that present as complete, incomplete or compressive. One theory proposed to repair the injured spinal cord and regain motor control is to regenerate axons through the lesion site. This study was designed to quantify the impact of a local injectable in situ forming hydrogel reservoir therapy following rat hemisection SCI. We investigated the effect of hydrogel only treatment following SCI in addition to hydrogels loaded with a neurotrophic factor, Neurotrophin-3 (NT-3), immediately following SCI. Functional recovery, assessed by Basso Beattie Bresnahan (BBB) locomotor test, and local healing mechanisms, including neuronal growth, glial scar formation, inflammation and collagen deposition were investigated one and 6 weeks postsurgery. Delivery of an injectable hydrogel significantly increased functional recovery at four and 6 weeks post injury. In addition, a significant reduction in the inhibitory glial scar and in inflammation was observed at the injury site. Similarly hydrogel + NT-3 delivered directly into the injury site significantly reduced glial scarring and collagen deposition. The hydrogel + NT-3 also resulted in a significant increase in neurons at 6 weeks post injury. This study represents a novel and effective therapy combining growth factor and a biomaterial based therapy following SCI.
  • Publication
    Differential glycosylation expression in injured rat spinal cord treated with immunosuppressive drug Cyclosporin-A.
    (American Chemical Society, 2019-02-12) Kilcoyne, Michelle; Patil, Vaibhav; O'Grady, Claire; Bradley, Ciara; McMahon, Siobhan S.; Seventh Framework Programme; Science Foundation Ireland; Royal Society of Chemistry
    Glycosylation is ubiquitous throughout the central nervous system and altered following spinal cord injury (SCI). The glial scar that forms following SCI is composed of several chondroitin sulfate proteoglycans, which inhibit axonal regrowth. Cyclosporin-A (CsA), an immunosuppressive therapeutic, has been proposed as a potential treatment after SCI. We investigated CsA treatment in the spinal cord of healthy, contusion injured, and injured CsA-treated rats. Lectin histochemistry using fluorescently labeled lectins, SBA, MAA, SNA-I, and WFA, was performed to identify the terminal carbohydrate residues of glycoconjugates within the spinal cord. SBA staining decreased in gray and white matter following spinal cord injury, whereas staining was increased at the lesion site in CsA-treated animals, indicating an increase in galactose and N-acetylgalactosamine terminal structures. No significant changes in MAA were observed. WFA staining was abundant in gray matter and observed to increase at the lesion site, in agreement with increased expression of chondroitin sulfate proteoglycans. SNA-I-stained blood vessels in all spinal cord regions and dual staining identified a subpopulation of astrocytes in the lesion site, which expressed ¿-(2,6)-sialic acid. Glycosylation were altered in injured spinal cord treated with CsA, indicating that glycosylation and alteration of particular carbohydrate structures are important factors to consider in the examination of the environment of the spinal cord after injury.
  • Publication
    Analysis of reactive astrocytes and NG2 proteoglycan in ex vivo rat models of spinal cord injury
    (Elsevier, 2018-09-26) Patar, Azim; Dockery, Peter; Howard, Linda; McMahon, Siobhan; Ministry of Higher Education, Malaysia; College of Medicine, Nursing and Health Sciences, National University of Ireland Galway
    Background: The use of animals to model spinal cord injury (SCI) requires extensive post-operative care and can be expensive, which makes an altemative model extremely attractive. The use ofex vivo slice cultures is an alternative way to study the pathophysiological changes that can mimic in vivo conditions and support the 3Rs (replacement, reduction and refinement) of animal use in SCI research models.New method: In this study the presence of reactive astrocytes and NG2 proteoglycans was investigated in two ex vivo models of SCI; stab injury and transection injury. Stereological analysis to measure immunohistochemical staining was performed on the scar and injury zones to detect astrocytes and the chondroitin sulphate proteoglycan NG2.Results: The volume fraction (Vv) of reactive astrocytes and NG2 proteoglycans increased significantly between day 3 and day 10 post injury in both ex vivo models. This data shows how ex vivo SCI models are a useful research tool allowing reduction of research cost and time involved in carrying out animal studies, as well as reducing the numbers of animals used.Comparison with existing method: This is the first evidence of an ex vivo stab injury model of SCI and also the first comparison of immunohistochemical staining for injury markers within stab injured and transection injured ex vivo slice cultures.Conclusions: The use of organotypic slice culture models provide a simple way to study the cellular consequences following SCI and they can also be used as a platform for potential therapeutics regimes for the treatment of SCI.
  • Publication
    Cell viability in three ex vivo rat models of spinal cord injury
    (Wiley, 2018-11-11) Patar, Azim; Dockery, Peter; Howard, Linda; McMahon, Siobhan S.; Ministry of Higher Education, Malaysia; College of Medicine, Nursing and Health Sciences, National University of Ireland Galway
    Spinal cord injury (SCI) is a devastating disorder that has a poor prognosis of recovery. Animal models of SCI are useful to understand the pathophysiology of SCI and the potential use of therapeutic strategies for human SCI. Ex vivo models of central nervous system (CNS) trauma, particularly mechanical trauma, have become important tools to complement in vivo models of injury in order to reproduce the sequelae of human CNS injury. Ex vivo organotypic slice cultures (OSCs) provide a reliable model platform for the study of cell dynamics and therapeutic intervention following SCI. In addition, these ex vivo models support the 3R concept of animal use in SCI research - replacement, reduction and refinement. Ex vivo models cannot be used to monitor functional recovery, nor do they have the intact blood supply of the in vivo model systems. However, the ex vivo models appear to reproduce many of the post traumatic events including acute and secondary injury mechanisms. Several well-established OSC models have been developed over the past few years for experimental spinal injuries ex vivo in order to understand the biological response to injury. In this study, we investigated cell viability in three ex vivo OSC models of SCI: stab injury, transection injury and contusion injury. Injury was inflicted in postnatal day 4 rat spinal cord slices. Stab injury was performed using a needle on transverse slices of spinal cord. Transection injury was performed on longitudinal slices of spinal cord using a double blade technique. Contusion injury was performed on longitudinal slices of spinal cord using an Infinite Horizon impactor device. At days 3 and 10 post-injury, viability was measured using dual staining for propidium iodide and fluorescein diacetate. In all ex vivo SCI models, the slices showed more live cells than dead cells over 10 days in culture, with higher cell viability in control slices compared with injured slices. Although no change in cell viability was observed between time-points in stab- and contusion-injured OSCs, a reduction in cell viability was observed over time in transection-injured OSCs. Taken together, ex vivo SCI models are a useful and reliable research tool that reduces the cost and time involved in carrying out animal studies. The use of OSC models provides a simple way to study the cellular consequences following SCI, and they can also be used to investigate potential therapeutics regimes for the treatment of SCI.