Indicators of diptera diversity in wet grassland habitats are influenced by environmental variability, scale of observation, and habitat type

Carey, John G.J.
Brien, Shane
Williams, Christopher D.
Gormally, Michael J.
Carey, John G.J. Brien, Shane; Williams, Christopher D.; Gormally, Michael J. (2017). Indicators of diptera diversity in wet grassland habitats are influenced by environmental variability, scale of observation, and habitat type. Ecological Indicators 82 , 495-504
In low intensity agri-ecosystems such as wet grassland habitats, the inclusion of invertebrates in conservation assessments and monitoring is usually limited to charismatic groups such as bees or butterflies. However, wet grasslands support a wide range of inveterate groups, some of which may exhibit limited movement not generally represented by more mobile groups such as those typically examined. The use of surrogate species which exemplify broader invertebrate diversity has been suggested as a possible means of including these overlooked invertebrates (such as Diptera) in conservation planning within these habitats. Based on collections made by Malaise trap, we utilized two families of Diptera (Sciomyzidae and Syrphidae) as indicators of a wider range of dipteran diversity (nine Diptera families identified to parataxonomic unit level [PUs]) in wet grassland habitats. We examined the role of environmental variability, spatial scale, and habitat type on patterns of cross-taxon congruence for all three assemblages. Both environmental correlation and community congruence were significantly stronger among assemblages when examined at low spatial scales, highlighting the need to examine dipteran groups at scales untypical of current agri-environmental assessments; namely field and farm level. Furthermore, when wet grasslands were differentiated into two habitat categories (sedge and rush dominated grasslands), the significance of the community congruence increased markedly. This correlation was particularly strong between Sciomyzidae and PUs which demonstrated similar differentiation based on habitat type, implying that assemblages which exhibit comparable ecological partitioning are more likely to be useful surrogates of one another. Correlations between richness, abundance and Shannon's diversity were highly variable among groups, suggesting compositional analysis as the most appropriate examination of dipteran diversity for surrogacy studies. The results indicate that cross-assemblage congruence of Diptera is influenced by similarity of response to environmental variability, scale of observation, and examination of assemblages differentiated into appropriate habitat categories. The results illustrate the need to investigate invertebrate biodiversity surrogates at scales appropriate to the indicator groups and examine congruence among assemblages within specific habitat categories. Such an approach has the potential to maximise gamma diversity in areas where wet grasslands are under threat of intensification or abandonment.
Elsevier BV
Publisher DOI
Attribution-NonCommercial-NoDerivs 3.0 Ireland