Evolution of anisotropy in soft tissue
Murphy, J. G.
Murphy, J. G.
Repository DOI
Publication Date
2013-11-20
Type
Article
Downloads
Citation
Murphy, J. G. (2013). Evolution of anisotropy in soft tissue. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 470 (2161),
Abstract
The phenomenological approach to the modelling of the mechanical response of arteries usually assumes a reduced form of the strain-energy function in order to reduce the mathematical complexity of the model. A common approach eschews the full basis of seven invariants for the strain-energy function in favour of a reduced set of only three invariants. It is shown that this reduced form is not consistent with the corresponding full linear theory based on infinitesimal strains. It is proposed that compatibility with the linear theory is an essential feature of any nonlinear model of arterial response. Two approaches towards ensuring such compatibility are proposed. The first is that the nonlinear theory reduces to the full six-constant linear theory, without any restrictions being imposed on the constants. An alternative modelling strategy whereby an anisotropic material is compatible with a simpler material in the linear limit is also proposed. In particular, necessary and sufficient conditions are obtained for a nonlinear anisotropic material to be compatible with an isotropic material for infinitesimal deformations. Materials that satisfy these conditions should be useful in the modelling of the crimped collagen fibres in the undeformed configuration.
Funder
Publisher
The Royal Society
Publisher DOI
10.1098/rspa.2013.0548
Rights
Attribution-NonCommercial-NoDerivs 3.0 Ireland