Theoretical and Kinetic Study of the Reactions of Ketones with HO(2) Radicals. Part I: Abstraction Reaction Channels.
Mendes, Jorge ; Zhou, Chong-Wen ; Curran, Henry J.
Mendes, Jorge
Zhou, Chong-Wen
Curran, Henry J.
Loading...
Repository DOI
Publication Date
2013
Type
Article
Downloads
Citation
Mendes J, Zhou CW, Curran HJ. (2013) Theoretical and Kinetic Study of the Reactions of Ketones with HO(2) Radicals. Part I: Abstraction Reaction Channels. J Phys Chem A. 2013 Apr 16. [Epub ahead of print]
Abstract
This work presents an ab-initio and chemical kinetic study of the reaction mechanisms of hydrogen atom abstraction by the HO2 radical on five ketones: dimethyl, ethyl methyl, n-propyl methyl, iso-propyl methyl and iso-butyl methyl ketones. The Moller-Plesset method with 6-311G(d,p) basis set has been used in the geometry optimization and the frequency calculation for all the species involved in the reactions, as well as the hindrance potential description for reactants and transition states. Intrinsic reaction co-ordinate calculations were carried out to validate all the connections between transition states and local minima. Energies are reported at the CCSD(T)/cc-pVTZ//MP2/6-311G(d,p) level of theory. The CCSD(T)/cc-pVXZ method (X = D, T, Q) was used for the reaction mechanism of dimethyl ketone + HO2 radical in order to benchmark the computationally less expensive method of CCSD(T)/cc-pVTZ//MP2/6-311G(d,p). High-pressure limit rate constants have been calculated for all the reaction channels by conventional transition state theory with Eckart tunneling corrections and 1-D hindered rotor approximations in the temperature range 500-2000 K.
Funder
Publisher
Publisher DOI
Rights
Attribution-NonCommercial-NoDerivs 3.0 Ireland