A dislocation-based yield strength determination model in nano-indentation test

Tao, Ping
Ye, Fei
Gong, Jianming
Barrett, Richard A.
Leen, Sean B.
Tao, Ping, Ye, Fei, Gong, Jianming, Barrett, Richard A., & Leen, Seán B. (2021). A dislocation-based yield strength model for nano-indentation size effect. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. doi:10.1177/1464420721992796
This paper presents a dislocation-based yield strength model for the nano-indentation size effect. The model is based on functional expressions involving the densities of statistically stored dislocations and geometrically necessary dislocations. A single-phase austenitic stainless steel (316L) and a ferrite-austenite dual-phase steel (2205) are used here as the case-study materials to validate the proposed model. Experimental testing and finite element modelling of nano-indentation of the two materials are presented. Experimental tests are performed in the indentation load range from 1000 µN to 10000 µN. For 2205 steel, finite element modelling is performed using a dual-phase microstructure-based model. It is shown that, with consideration of statistically stored dislocations and geometrically necessary dislocations, finite element modelling results can reproduce measured load–displacement curves and hence, the size effect, within an error range of about 5%.
SAGE Publications
Publisher DOI
Attribution-NonCommercial-NoDerivs 3.0 Ireland