Publication

Impact of P inputs on source-sink P dynamics of sediment along an agricultural ditch network

Ezzati, Golnaz
Fenton, Owen
Healy, Mark G.
Christianson, Laura E.
Feyereisen, Gary
Thornton, S. F.
Chen, Qing
Fan, Bingqian
Ding, J.
Daly, Karen
Citation
Ezzati, Golnaz, Fenton, Owen, Healy, Mark G., Christianson, Laura E., Feyereisen, Gary, Thornton, S. F., Chen, Qing, Fan, Bingqian, Ding, J., Daly, Karen. (2020). Impact of P inputs on source-sink P dynamics of sediment along an agricultural ditch network. Journal of Environmental Management, 257, 109988. doi: https://doi.org/10.1016/j.jenvman.2019.109988
Abstract
Phosphorus (P) loss from intensive dairy farms is a pressure on water quality in agricultural catchments. At farm scale, P sources can enter in-field drains and open ditches, resulting in transfer along ditch networks and delivery into nearby streams. Open ditches could be a potential location for P mitigation if the right location was identified, depending on P sources entering the ditch and the source-sink dynamics at the sediment-water interface. The objective of this study was to identify the right location along a ditch to mitigate P losses on an intensive dairy farm. High spatial resolution grab samples for water quality, along with sediment and bankside samples, were collected along an open ditch network to characterise the P dynamics within the ditch. Phosphorus inputs to the ditch adversely affected water quality, and a step change in P concentrations (increase in mean dissolved reactive phosphorus (DRP) from 0.054 to 0.228 mg L-1) midway along the section of the ditch sampled, signalled the influence of a point source entering the ditch. Phosphorus inputs altered sediment P sorption properties as P accumulated along the length of the ditch. Accumulation of bankside and sediment labile extractable P, Mehlich 3 P (M3P) (from 13 to 97 mg kg-1) resulted in a decrease in P binding energies (k) to
Publisher
Elsevier
Publisher DOI
10.1016/j.jenvman.2019.109988
Rights
Attribution-NonCommercial-NoDerivs 3.0 Ireland