Acoustic waves at the interface of a pre-stressed incompressible elastic solid and a viscous fluid

Destrade, Michel
OTTENIO, M., DESTRADE, M., OGDEN, R.W. (2007) 'Acoustic waves at the interface of a pre-stressed incompressible elastic solid and a viscous fluid'. International Journal of Non-Linear Mechanics, Special Issue in Honour of R.S. Rivlin, 42 :310-320.
We analyse the influence of pre-stress on the propagation of interfacial waves along the boundary of an incompressible hyperelastic half-space that is in contact with a viscous fluid extending to infinity in the adjoining half-space. One aim is to derive rigorously the incremental boundary conditions at the interface; this derivation is delicate because of the interplay between the Lagrangian and the Eulerian descriptions but is crucial for numerous problems concerned with the interaction between a compliant wall and a viscous fluid. A second aim of this work is to model the ultrasonic waves used in the assessment of aortic aneurysms, and here we find that for this purpose the half-space idealization is justified at high frequencies. A third goal is to shed some light on the stability behaviour in compression of the solid half-space, as compared with the situation in the absence of fluid; we find that the usual technique of seeking standing waves solutions is not appropriate when the half-space is in contact with a fluid; in fact, a correct analysis reveals that the presence of a viscous fluid makes a compressed neo-Hookean half-space slightly more stable. For a wave travelling in a direction of principal strain, we obtain results for the case of a general (incompressible isotropic) strain-energy function. For a wave travelling parallel to the interface and in an arbitrary direction in a plane of principal strain, we specialize the analysis to the neo-Hookean strain-energy function.
Publisher DOI
Attribution-NonCommercial-NoDerivs 3.0 Ireland