Hydrothermal vent fields and chemosynthetic biota on the world's deepest seafloor spreading centre
Connelly, Douglas P. ; Copley, Jonathan T. ; Murton, Bramley J. ; Stansfield, Kate ; Tyler, Paul A. ; German, Christopher R. ; Van Dover, Cindy L. ; Amon, Diva ; Furlong, Maaten ; Grindlay, Nancy ... show 10 more
Connelly, Douglas P.
Copley, Jonathan T.
Murton, Bramley J.
Stansfield, Kate
Tyler, Paul A.
German, Christopher R.
Van Dover, Cindy L.
Amon, Diva
Furlong, Maaten
Grindlay, Nancy
Repository DOI
Publication Date
2012-01-10
Type
Article
Downloads
Citation
Connelly, Douglas P. Copley, Jonathan T.; Murton, Bramley J.; Stansfield, Kate; Tyler, Paul A.; German, Christopher R.; Van Dover, Cindy L.; Amon, Diva; Furlong, Maaten; Grindlay, Nancy; Hayman, Nicholas; Hühnerbach, Veit; Judge, Maria; Le Bas, Tim; McPhail, Stephen; Meier, Alexandra; Nakamura, Ko-ichi; Nye, Verity; Pebody, Miles; Pedersen, Rolf B.; Plouviez, Sophie; Sands, Carla; Searle, Roger C.; Stevenson, Peter; Taws, Sarah; Wilcox, Sally (2012). Hydrothermal vent fields and chemosynthetic biota on the world's deepest seafloor spreading centre. Nature Communications 3 ,
Abstract
The Mid-Cayman spreading centre is an ultraslow-spreading ridge in the Caribbean Sea. Its extreme depth and geographic isolation from other mid-ocean ridges offer insights into the effects of pressure on hydrothermal venting, and the biogeography of vent fauna. Here we report the discovery of two hydrothermal vent fields on the Mid-Cayman spreading centre. The Von Damm Vent Field is located on the upper slopes of an oceanic core complex at a depth of 2,300 m. High-temperature venting in this off-axis setting suggests that the global incidence of vent fields may be underestimated. At a depth of 4,960 m on the Mid-Cayman spreading centre axis, the Beebe Vent Field emits copper-enriched fluids and a buoyant plume that rises 1,100 m, consistent with >400 degrees C venting from the world's deepest known hydrothermal system. At both sites, a new morphospecies of alvinocaridid shrimp dominates faunal assemblages, which exhibit similarities to those of Mid-Atlantic vents.
Funder
Publisher
Springer Nature
Publisher DOI
10.1038/ncomms1636
Rights
Attribution-NonCommercial-NoDerivs 3.0 Ireland