Development of the meshless finite volume particle method with exact and efficient calculation of interparticle area
Quinlan, Nathan J. ; Lobovsky, Libor ; Nestor, Ruairi M.
Quinlan, Nathan J.
Lobovsky, Libor
Nestor, Ruairi M.
Loading...
Repository DOI
Publication Date
2014-02-18
Type
Article
Downloads
Citation
Quinlan Nathan J, Lobovský Libor, Nestor Ruairi M (2014) 'Development of the meshless finite volume particle method with exact and efficient calculation of interparticle area'. Computer Physics Communications, .
Abstract
The Finite Volume Particle Method (FVPM) is a meshless method based on a definition of interparticle area which is closely analogous to cell face area in the classical finite volume method. In previous work, the interparticle area has been computed by numerical integration, which is a source of error and is extremely expensive. We show that if the particle weight or kernel function is defined as a discontinuous top-hat function, the particle interaction vectors may be evaluated exactly and efficiently. The new formulation reduces overall computational time by a factor between 6.4 and 8.2. In numerical experiments on a viscous flow with an analytical solution, the method converges under all conditions. Significantly, in contrast with standard FVPM and SPH, error depends on particle size but not on particle overlap (as long as the computational domain is completely covered by particles). The new method is shown to be superior to standard FVPM for shock tube flow and inviscid steady transonic flow. In benchmarking on a viscous multiphase flow application, FVPM with exact interparticle area is shown to be competitive with a volume-of-fluid solver in terms of computational time required to resolve the structure of an interface.
Funder
Publisher
Elsevier
Publisher DOI
10.1016/j.cpc.2014.02.017
Rights
Attribution-NonCommercial-NoDerivs 3.0 Ireland