Signaling pathways in mouse embryo stem cell self-renewal

Quinlan, Leo
Quinlan LR (2011) 'Signaling Pathways in Mouse Embryo Stem Cell Self-Renewal' In: Kallos(Eds.). Embryonic Stem Cells - Basic Biology to Bioengineering. Croatia : In Tech.
At the pre-implantation blastocyst stage of development, the mammalian embryo is composed of a unique collection of cells of which three major populations predominate. The outermost layer the trophectoderm (TE) gives rise to the placenta, which acts to sustain the developing fetus connecting it to the mother host. The next is a cluster of cells known as the inner cell mass (ICM) these cells are said to be pluripotent (Fig. 1). A third group of cells known as the primitive endoderm, surrounds the ICM cells at the epiblast stage. As development proceeds the ICM cells rapidly divide and eventually begin to differentiate forming the three embryonic germ layers (ectoderm, mesoderm and endoderm). Effectively these pluripotent ICM cells are the precursors of all adult tissues. As these pluripotent cells commit to a specific cellular lineage, they lose their pluripotency. Embryonic stem (ES) cells are euploid pluripotent cell lines isolated directly from cultured preimplantation embryos. The first stable ES cell lines were isolated by immunosurgery from the ICM of implantation- delayed, mouse blastocysts (Martin, 1981; Evans and Kaufman, 1981). Mouse ES cells are very closely related to early ICM cells in terms of their developmental potential (Beddington and Robertson, 1989). This chapter will focus on mouse ES cells (mES) unless otherwise stated. Three features characterize mES cells; 
In Tech
Publisher DOI
Attribution-NonCommercial-NoDerivs 3.0 Ireland