Scale-up of an unsteady flow field for enhanced spatial and temporal resolution of PIV measurements: application to leaflet wake flow in a mechanical heart valve
Bellofiore, Alessandro ; Donohue, Eilis M. ; Quinlan, Nathan J.
Bellofiore, Alessandro
Donohue, Eilis M.
Quinlan, Nathan J.
Loading...
Repository DOI
Publication Date
2011-07
Type
Article
Downloads
Citation
Alessandro Bellofiore, Eilis M Donohue, Nathan J Quinlan (2011) 'Scale-up of an unsteady flow field for enhanced spatial and temporal resolution of PIV measurements: application to leaflet wake flow in a mechanical heart valve'. Experiments In Fluids, 51 (1):161-176.
Abstract
A scale-up approach is developed to enhance effective spatial and temporal resolution of PIV measurements. An analysis shows that complete similarity can be maintained for certain unsteady flows and that all types of error in PIV are either reduced or unaffected by scale-up. Implementation and results are described for flow through a mechanical heart valve (MHV), in which high resolution is necessary to advance understanding of the effects of small-scale flow structure on blood cells. With a large-scale model geometry and a low-viscosity model fluid, spatial and temporal resolutions are increased by factors of 5.8 and 118, respectively, yielding the finest resolution to date for MHV flow. Measurements near the downstream tip of a valve leaflet detect eddies as small as 400 ¿m shed in the leaflet wake. Impulsively started flow exhibits vortex shedding frequencies broadly consistent with the literature on flat-plate and aerofoil wakes, while the physiological unsteady flow waveform promotes 40% higher frequency at peak flow.
Funder
Publisher
Springer
Publisher DOI
Rights
Attribution-NonCommercial-NoDerivs 3.0 Ireland