Ultra-sensitive label free imaging below the resolution limit
Alexandrov, Sergey ; McGrath, James ; Sheppard, Colin J. R. ; Boccafoschi, Francesca ; Giannini, Cinzia ; Sibillano, Teresa ; Subhash, Hrebesh ; Hogan, Josh ; Leahy, James J.
Alexandrov, Sergey
McGrath, James
Sheppard, Colin J. R.
Boccafoschi, Francesca
Giannini, Cinzia
Sibillano, Teresa
Subhash, Hrebesh
Hogan, Josh
Leahy, James J.
Loading...
Repository DOI
Publication Date
2019-02-02
Type
Conference Paper
Downloads
Citation
Alexandrov, Sergey A. , McGrath, James , Sheppard, Colin , Boccafoschi, Francesca, Giannini, Cinzia, Sibillano, Teresa, Subhash, Hrebesh, Hogan, Josh, Leahy, James J. (2019). Ultra-sensitive label free imaging below the resolution limit (Conference Presentation) (Proceedings Vol. 10891). Paper presented at the SPIE BiOS, 2019, San Francisco, United States, 02-07 February.
Abstract
Almost all known nanoscopy methods rely upon the contrast created by fluorescent labels attached to the object of interest. This causes limitations on their applicability to in vivo imaging. A new label-free spectral encoding of spatial frequency (SESF) approach to nanoscale probing of three-dimensional structures has been developed. It was demonstrated that spatial frequencies, encoded with optical wavelengths, can be passed though the optical system independently of the resolution of the imaging system. As a result information about small size structures can be detected even using a low resolution imaging system. Different versions of the SESF imaging have been published [1-7], including a novel contrast mechanism for high resolution imaging [1], real time nano-sensitive imaging [2], reconstruction the axial (along depth) spatial frequency profiles for each point with nano-sensitivity to structural changes [3], and the adaptation of the SESF approach to depth resolved imaging [4,5]. Recently the SESF approach has been applied to overcome the diffraction limit and dramatically improve resolution [6,7]. Here we present further development of the SESF approach including correlation mapping SESF imaging. Both results of numerical simulation and preliminary experimental results, including biological samples, will be presented. [1] Alexandrov, et.al., Opt. Lett. 36 3323 (2011). [2] Alexandrov, et.al., Opt. Express 20 (8) 9203 (2012). [3] Alexandrov, et.al., Appl. Phys. Let., 101 033702 (2012). [4] Uttam, et.al., Opt. Express, 21, 7488 (2013). [5] Alexandrov, et.al., Nanoscale, 6, 3545 (2014). [6] Alexandrov, et.al., Sci. Rep., 5, doi: 10.1038/srep13274 (2015). [7] Alexandrov, et.al., J. Biophotonics, https://doi.org/10.1002/jbio.201700385 (2018).
Funder
Publisher
SPIE (Society of Photo-optical Instrumentation Engineers) Digital Library
Publisher DOI
10.1117/12.2502479
Rights
Attribution-NonCommercial-NoDerivs 3.0 Ireland