Propagating data policies: a user study
Daga, Enrico ; d’Aquin, Mathieu ; Motta, Enrico
Daga, Enrico
d’Aquin, Mathieu
Motta, Enrico
Loading...
Publication Date
2017-11-04
Type
Conference Paper
Downloads
Citation
Daga, Enrico, d'Aquin, Mathieu, & Motta, Enrico. (2017). Propagating Data Policies: a User Study. Paper presented at the Proceedings of the Knowledge Capture Conference, Austin, TX, USA, December 04 – 06.
Abstract
When publishing data, data licences are used to specify the actions that are permitted or prohibited, and the duties that target data consumers must comply with. However, in complex environments such as a smart city data portal, multiple data sources are constantly being combined, processed and redistributed. In such a scenario, deciding which policies apply to the output of a process based on the licences attached to its input data is a difficult, knowledgeintensive task. In this paper, we evaluate how automatic reasoning upon semantic representations of policies and of data flows could support decision making on policy propagation. We report on the results of a user study designed to assess both the accuracy and the utility of such a policy-propagation tool, in comparison to a manual approach.
Funder
Publisher
ACM
Publisher DOI
Rights
Attribution-NonCommercial-NoDerivs 3.0 Ireland