Investigation into solid and solution properties of quinizarin

Cheuk, Dominic
Svärd, Michael
Seaton, Colin
McArdle, Patrick
Rasmuson, Åke C.
Repository DOI
Publication Date
Cheuk, Dominic; Svärd, Michael; Seaton, Colin; McArdle, Patrick; Rasmuson, Åke C. (2015). Investigation into solid and solution properties of quinizarin. CrystEngComm 17 (21), 3985-3997
Polymorphism, crystal shape and solubility of 1,4-dihydroxyanthraquinone (quinizarin) have been investigated in acetic acid, acetone, acetonitrile, n-butanol and toluene. The solubility of FI and FII from 20 degrees C to 45 degrees C has been determined by a gravimetric method. By slow evaporation, pure FI was obtained from n-butanol and toluene, pure FII was obtained from acetone, while either a mixture of the two forms or pure FI was obtained from acetic acid and acetonitrile. Slurry conversion experiments have established an enantiotropic relationship between the two polymorphs and that the commercially available FI is actually a metastable polymorph of quinizarin under ambient conditions. However, in the absence of FII, FI is kinetically stable for many days over the temperature range and in the solvents investigated. FI and FII have been characterized by infrared spectroscopy (IR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), transmission and ordinary powder X-ray diffraction (PXRD) at different temperatures. The crystal structure of FII has been determined by single-crystal XRD. DSC and high-temperature PXRD have shown that both FI and FII will transform into a not previously reported hightemperature form (FIII) around 185 degrees C before this form melts at 200-202 degrees C. By indexing FIII PXRD data, a triclinic P (1) over bar cell was assigned to FIII. The solubility of quinizarin FI and FII in the pure organic solvents used in the present work is below 2.5% by weight and decreases in the order: toluene, acetone, acetic acid, acetonitrile and n-butanol. The crystal shapes obtained in different solvents range from thin rods to flat plates or very flat leaves, with no clear principal difference observed between FI and FII.
Royal Society of Chemistry (RSC)
Publisher DOI
Attribution-NonCommercial-NoDerivs 3.0 Ireland