Surface waves and surface stability for pre-stretched, unconstrained, non-linearly elastic half-space
Destrade, Michel
Destrade, Michel
Loading...
Repository DOI
Publication Date
2009-06
Type
Article
Downloads
Citation
MURPHY, J.G., DESTRADE, M. (2009) 'Surface waves and surface stability for pre-stretched, unconstrained, non-linearly elastic half-space'. International Journal of Non-Linear Mechanics, Special Issue on Waves in Nonlinear Solids, 44 :545-551.
Abstract
An unconstrained, non-linearly elastic, semi-infinite solid is maintained in a state of large static plane strain. A power¿law relation between the pre-stretches is assumed and it is shown that this assumption is well motivated physically and is likely to describe the state of pre-stretch for a wide class of materials. A general class of strain-energy functions consistent with this assumption is derived. For this class of materials, the secular equation for incremental surface waves and the bifurcation condition for surface instability are shown to reduce to an equation involving only ordinary derivatives of the strain-energy equation. A compressible neo-Hookean material is considered as an example and it is found that finite compressibility has little quantitative effect on the speed of a surface wave and on the critical ratio of compression for surface instability.
Funder
Publisher
Elsevier
Publisher DOI
http://dx.doi.org/10.1016/j.ijnonlinmec.2008.09.007
Rights
Attribution-NonCommercial-NoDerivs 3.0 Ireland