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t. We show that a 
ellular 
omplex de�ned by Flöge allows to determine the integral homol-ogy of the Bian
hi groups PSL2(O−m), where O−m is the ring of integers of an imaginary quadrati
number �eld Q
ˆ√

−m
˜ for a square-free natural number m.In the 
ases of non-trivial 
lass group, we handle the di�
ulties arising from the 
usps asso
iated tothe non-trivial ideal 
lasses of O−m. We use this to 
ompute in the 
ases m = 5, 6, 10, 13 and 15 theintegral homology of PSL2(O−m), whi
h before was known only in the 
ases m = 1, 2, 3, 7 and 11 withtrivial 
lass group. Contents1. Introdu
tion 12. Flöge's 
omplex, 
ontra
tibility and a spe
tral sequen
e 32.1. The equivariant spe
tral sequen
e in group homology 52.2. The homology of the �nite subgroups in the Bian
hi groups 82.3. The mass formula for the equivariant Euler 
hara
teristi
 103. Computations of the integral homology of PSL2

(
O

Q[
√
−m ]

) 113.1. m = 13 123.2. m = 5 183.3. m = 10 203.4. m = 6 243.5. m = 15 274. Appendix: The equivariant retra
tion 29Referen
es 311. Introdu
tionThe obje
ts of study of this paper are the PSL2-groups Γ of the ring of integers O−m := OQ[
√
−m ]of an imaginary quadrati
 number �eld Q[

√−m ], where m is a square-free positive integer. We have
O−m = Z[ω] with ω =

√−m for m 
ongruent to 1 or 2 modulo 4, and ω = −1
2 + 1

2

√−m for m
ongruent to 3 modulo 4.The arithmeti
 groups under study have often been 
alled Bian
hi groups, be
ause Luigi Bian
hi[6℄ 
omputed fundamental domains for them as early as in 1892. They a
t on PSL2(C)'s symmetri
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2 RAHM AND FUCHSFigure 1: Results in the group homology with simple integer 
oe�
ients
Hq(PSL2(O−5); Z) ∼=






Z2 ⊕ Z/3⊕ (Z/2)2, q = 1,

Z⊕ Z/4⊕ Z/3⊕ Z/2, q = 2,

Z/3⊕ (Z/2)q, q > 3;

Hq(PSL2(O−10); Z) ∼=






Z3 ⊕ (Z/2)2, q = 1,

Z2 ⊕ Z/4⊕ Z/3⊕ Z/2, q = 2,

Z/3⊕ (Z/2)q, q > 3;

Hq(PSL2(O−15); Z) ∼=






Z2 ⊕ Z/3⊕ Z/2, q = 1,

Z⊕ Z/3⊕ Z/2, q = 2,

Z/3⊕ Z/2, q > 3;

Hq(PSL2(O−13); Z) ∼=






Z3 ⊕ (Z/2)2, q = 1,

Z2 ⊕ Z/4⊕ (Z/3)2 ⊕ Z/2, q = 2,

(Z/2)q ⊕ (Z/3)2, q = 4k + 3, k > 0,

(Z/2)q, q = 4k + 4, k > 0,

(Z/2)q, q = 4k + 1, k > 1,

(Z/2)q ⊕ (Z/3)2, q = 4k + 2, k > 1;

Hq(PSL2(O−6); Z) ∼=






Z2 ⊕ Z/3⊕ Z/2, q = 1,

Z⊕ Z/4⊕ Z/3⊕ (Z/2)2, q = 2,

Z/3⊕ (Z/2)2k+2, q = 6k + 3,

Z/3⊕ (Z/2)2k+1, q = 6k + 4,

Z/3⊕ (Z/2)2k+4, q = 6k + 5,

Z/3⊕ (Z/2)2k+3, q = 6k + 6,

Z/3⊕ (Z/2)2k+2, q = 6k + 7,

Z/3⊕ (Z/2)2k+5, q = 6k + 8.spa
e, the hyperboli
 three-spa
e H. Interest in this a
tion �rst arose when Felix Klein and HenriPoin
aré studied 
ertain groups of Möbius transformations with 
omplex 
oe�
ients [14,18℄, laying thegroundwork for the study of Kleinian groups. The latter are nowadays de�ned as dis
rete subgroupsof PSL2(C). Ea
h non-
o
ompa
t arithmeti
 Kleinian group is 
ommensurable with some Bian
higroup [15℄. Thus, the Bian
hi groups play a key role in the study of arithmeti
 Kleinian groups. Awealth of information on the Bian
hi groups 
an be found in the pertinent monographs [8, 9, 15℄.Poin
aré gave an expli
it formula for their a
tion on H. However, the virtual 
ohomologi
al dimensionof arithmeti
 groups whi
h are latti
es in SL2(C) is two, so it is desirable to restri
t this proper a
tionon H to a 
ontra
tible 
ellular two-dimensional spa
e. Moreover, this spa
e should be 
o�nite. Inprin
iple, this has been a
hieved by Mendoza [16℄ and also by Flöge [10℄, using redu
tion theory ofMinkowski, Humbert, Harder and others. Their two approa
hes have in 
ommon that they 
onsidertwo-dimensional Γ-equivariant retra
ts whi
h are 
o
ompa
t and are endowed with a natural CW-stru
ture su
h that the a
tion of Γ is 
ellular and the quotient is a �nite CW-
omplex.



INTEGRAL HOMOLOGY OF PSL2 OF IMAGINARY QUADRATIC INTEGERS 3Using Mendoza's 
omplex, S
hwermer and Vogtmann [20℄ 
al
ulated the integral group homology inthe 
ases of trivial 
lass group m = 1, 2, 3, 7, 11, and Vogtmann [24℄ 
omputed the rational homology asthe homology of the quotient spa
e in many 
ases of non-trivial 
lass group. The integral 
ohomologyin the 
ases m = 2, 3, 5, 6, 7, 10, 11 has been determined by Berkove [5℄, based on Flöge's presentationof the groups with generators and relations. A 
ompletely di�erent method to obtain group presenta-tions has been 
hosen by Yasaki [26℄, who has implemented an algorithm of Gunnells [12℄ to 
omputethe perfe
t forms modulo the a
tion of GL2(O−m) and obtain the fa
ets of the Voronoï polyhedronarising from a 
onstru
tion of Ash [3℄.It is the purpose of the present paper to show how Flöge's 
omplex 
an be used to obtain the integralhomology of Bian
hi groups also when the 
lass group is non-trivial. We obtain the results displayed in�gure 1. Thus for q > 2, the torsion in H∗(PSL2(O−5); Z) is the same as that in H∗(PSL2(O−10); Z),analogous to the 
ohomology results of Berkove [5℄. The free part of these homology groups is ina

ordan
e with the rational homology results of Vogtmann [24℄.In the 
ases of non-trivial ideal 
lass group, there is a di�eren
e between the approa
hes of Mendozaand Flöge. We use the upper-half-spa
e model of H and identify its boundary with C ∪∞ ∼= CP 1.The elements of the 
lass group of the number �eld are in bije
tion with the Γ-orbits of the 
usps,where the 
usps are ∞ and the elements of the number �eld Q
[√
−d

], thought of as elements of the
anoni
al boundary CP 1. The 
usps whi
h represent a non-trivial element of the 
lass group are 
om-monly 
alled singular points. Whilst Mendoza retra
ts away from all 
usps, Flöge retra
ts away onlyfrom the non-singular ones. Rather than the spa
e H itself, he 
onsiders the spa
e Ĥ obtained from
H by adjoining the Γ-orbits of the singular points. We 
onsider an analogous equivariant retra
tionof Ĥ su
h that its retra
t X 
ontains the singular points. Now it turns out that the quotient spa
eof X by Γ is 
ompa
t, and X is a suitable 
ontra
tible 2-dimensional Γ-
omplex also in the 
ase ofnon-trivial 
lass group.With an implementation in Pari/GP [2℄, due to the �rst named author, of Swan's algorithm [23℄ weobtain a fundamental polyhedron for Γ in H. In the 
ases 
onsidered, Bian
hi has already 
omputedthis polyhedron, so we have a 
ontrol of the 
orre
tness of the implementation.In the 
ases m = 5, 6 and 10, Flöge has 
omputed the 
ell stabilizers and 
ell identi�
ations; andwith our Pari/GP program, we redo Flöge's 
omputations and do the same 
omputation in the 
ases
m = 13 and 15. We use the equivariant Euler 
hara
teristi
 to 
he
k our 
omputations. Then wefollow the lines of S
hwermer and Vogtmann [20℄, en
ountering a spe
tral sequen
e whi
h degenerateson the E3-page, in 
ontrast to the 
ases of trivial 
lass group where it does so already on the E2-page.This is be
ause of the singular points in our 
ell 
omplex X, whi
h have in�nite stabilizers. So wehave some additional use of homologi
al algebra to obtain the homology of the Bian
hi group. Wegive the full details for our homology 
omputation in the 
ase m = 13. We then give slightly fewerdetails in the 
ases m = 5, 6, 10 and 15.The authors would like to thank Philippe Elbaz-Vin
ent and Bill Allombert for many helpful dis
us-sions and hints on the te
hniques and the referee for helpful 
omments.This arti
le is dedi
ated to Fritz Grunewald (1949 - 2010).2. Flöge's 
omplex, 
ontra
tibility and a spe
tral sequen
eDenote the hyperboli
 three-spa
e by H ∼= C × R∗

+. We will not use its smooth stru
ture, only itsstru
ture as a homogeneous SL2(C)-spa
e. The a
tion is given by the formula
(

a b
c d

)
· (z, r) :=

(
(d− cz)(az − b)− r2ca

|cz − d|2 + r2 |c|2
,

r

|cz − d|2 + r2 |c|2
)

;where (
a b
c d

)
∈ SL2(C). As usual, we extend the a
tion of SL2(C) to the boundary CP 1 whi
h weidentify with {r = 0}∪∞ ∼= C∪∞. The a
tion passes 
ontinuously to the boundary, where it redu
es



4 RAHM AND FUCHSto the usual a
tion by Möbius transformations (
a b
c d

)
· z = az−b

−cz+d . As −1 ∈ SL2(C) a
ts trivially, thea
tion passes to PSL2(C). Now, �x a square-free m ∈ N, let O−m be the ring of integers in Q[
√−m ],and de�ne Γ = PSL2(O−m). When the 
lass number of Q[

√−m ] is one, then 
lassi
al redu
tiontheory provides a natural equivariant deformation retra
t of H whi
h is a CW-
omplex. This 
omplexis de�ned as follows. One �rst 
onsiders the union of all hemispheres
Sµ,λ :=

{

(z, r) :

∣∣∣∣z −
λ

µ

∣∣∣∣
2

+ r2 =
1

|µ|2

}

⊂ H,for any two µ, λ with µO−m + λO−m = O−m. Then one 
onsiders the �spa
e above the hemispheres�
B :=

{
(z, r) : |cz − d|2 + r2 |c|2 > 1 for all c, d ∈ O−m, c 6= 0 su
h that cO−m + dO−m = O−m

}and its boundary ∂B inside H. For nontrivial 
lass group, the following de�nition 
omes to work.De�nition 1. A point s ∈ CP 1 − {∞} is 
alled a singular point if for all c, d ∈ O−m, c 6= 0,
cO−m + dO−m = O−m we have |cs− d| > 1.The singular points modulo the a
tion of Γ on CP 1 are in bije
tion with the nontrivial elements ofthe 
lass group [22℄. In [10℄, Flöge extends the hyperboli
 spa
e H to a larger spa
e Ĥ as follows.De�nition 2. As a set, Ĥ ⊂ C× R>0 is the 
losure under the Γ-a
tion of the union
B̂ := B ∪{singular points}. The topology is generated by the topology of H together with the followingneighborhoods of the translates s of singular points:

Ûǫ(s) := {s} ∪
(

s 0
−1 s−1

)
·
{
(z, r) ∈ H : r > ǫ−1

}
.Remark 3. The matrix (

s 0
−1 s−1

) maps the point at in�nity into s, thus giving the point s thetopology of ∞. The neighborhood Ûǫ(s) is sometimes 
alled a �horoball� be
ause in the upper-halfspa
e model it is a Eu
lidean ball, but with the hyperboli
 metri
 it has �in�nite radius�.The spa
e Ĥ is endowed with the natural Γ-a
tion. Now the essential aspe
t of Flöge's 
onstru
tionis the following 
onsequen
e of Flöge's theorem [11, 6.6℄, whi
h we append as theorem 28.Corollary 4. There is a retra
tion ρ from Ĥ onto the set X ⊂ Ĥ of all Γ-translates of ∂B̂, i. e.there is a 
ontinuous map ρ : Ĥ → X su
h that ρ(p) = p for all p ∈ X. The set X admits a naturalstru
ture as a 
ellular 
omplex X• on whi
h Γ a
ts 
ellularly.Remark 5. (1) We show with the lemma below that ρ is a homotopy equivalen
e, without givinga 
ontinuous path of maps Ĥ → Ĥ 
onne
ting ρ to the identity on Ĥ.(2) The map ρ is Γ-equivariant be
ause its �bers are geodesi
s. But we do not make use of thisfa
t, as we do not need to show that the homotopy type of Γ\Ĥ is the same as that of Γ\X.This would be useful in the 
ase of trivial 
lass group, i. e. the 
ase of a proper a
tion, to
ompute the rational homology H∗(Γ; Q) ∼= H∗(Γ\H; Q).(3) We will provide X• with a 
ellular stru
ture whi
h is �ne enough to make the 
ell stabilizers�x the 
ells pointwise.Lemma 6. Let Y be a CW-
omplex whi
h admits an in
lusion i into a 
ontra
tible topologi
al spa
e
A, su
h that i is a homeomorphism between Y with its 
ellular topology and the image i(Y ) with thesubset topology of A. Let p : A → Y be a 
ontinuous map with p ◦ i = idY . Then p is a homotopyequivalen
e.



INTEGRAL HOMOLOGY OF PSL2 OF IMAGINARY QUADRATIC INTEGERS 5Proof. For all n ∈ N, the indu
ed maps on the homotopy groups (idY )∗ = (p ◦ i)∗ : πn(Y ) → πn(Y )fa
tor through πn(A) = 0, hen
e are the zero map; and πn(Y ) = 0. Denote by c the 
onstant mapfrom A to the one-point spa
e. Then c ◦ i is a morphism of CW-
omplexes, and the zero maps itindu
es on the homotopy groups are isomorphisms. Thus by Whitehead's Theorem, c◦i is a homotopyequivalen
e. As A is 
ontra
tible, the 
omposition (c ◦ i) ◦ p = c is a homotopy equivalen
e, so thesame holds already for p. �Taking Y = X, A = Ĥ, p = ρ, and using lemma 8, we obtain a 
ru
ial fa
t for our 
omputations.Corollary 7. X• is 
ontra
tible.The following is an observation on Flöge's 
onstru
tion.Lemma 8. The spa
e Ĥ is 
ontra
tible.Proof. One 
an identify the boundary ofH ∼= {(z, r) ∈ C×R | r > 0} with CP 1 ∼= C∪∞ ∼= {r = 0}∪∞.By viewing the singular points as part of the boundary, we arrive at an upper half-spa
e model of Ĥ.Now 
onsider H1 := {(z, r) ∈ Ĥ : r > 1} with the subspa
e topology of Ĥ. The idea of the proof is to
onsider a verti
al retra
tion onto H1, and to show by an expli
it argument that preimages of opensets are open. Flöge [11, Korollar 5.8℄ suggests using the map
φ : Ĥ × [0, 1]→ Ĥ, ((z, r), t) 7→

{
(z, r) for all t ∈ [0, 1], if r > 1

(z, r + t(1− r)), if r < 1.Let us now 
he
k that this is a 
ontinuous family of 
ontinuous maps. Consider the 
olle
tion of openballs with respe
t to the Eu
lidean metri
 on C×R+ as soon as they are either 
ontained in C×R∗
+,or tou
h the boundary C × {0} in a 
usp in Ĥ − H. This is a basis for the topology of Ĥ. Considerone su
h open ball B, and its preimage under some φt, t ∈ [0, 1). This either lies entirely in H, and isopen, or it has boundary points. In the latter 
ase, 
onsider the inverse of φt on Ĥ − H1, given by

φ−1
t =

(
z, r−t

1−t

)if this is in Ĥ. Suppose there is a 
usp s with s ∈ Ĥ − H and φt(s, 0) ∈ B. As B is open, we �nd
β > 0 and δ > 0 su
h that (s, t + β) and (s + δ, t) are in B. Sin
e

{
φt

(
s, β

1−t

)
= (s, t + β) ∈ B

φt(s + δ, 0) = (s + δ, t) ∈ B,we know that (s, β
1−t) and (s + δ, 0) are in the preimage of B under φt. We dedu
e that the wholehorosphere of Eu
lidean diameter min {β, δ} tou
hing at the 
usp s is in
luded in the preimage of

B. Thus ea
h point of the preimage has a neighborhood entirely 
ontained in the preimage, whi
htherefore also is open. The 
ontinuity at t = 1 as well as the 
ontinuity in the variable t follow fromvery similar arguments. The spa
e H1 is homeomorphi
 to C× R+, thus 
ontra
tible. �2.1. The equivariant spe
tral sequen
e in group homology.Corollary 7 gives us a 
ontra
tible 
omplex X• on whi
h Γ a
ts 
ellularly. As a 
onsequen
e, the inte-gral homology H∗(Γ; Z) 
an be 
omputed as the hyperhomology H∗(Γ; C•(X)) of Γ with 
oe�
ientsin the 
ellular 
hain 
omplex C•(X) asso
iated to X. This hyperhomology is 
omputable be
ausethere is a spe
tral sequen
e as in [7, VII℄ whi
h is also the one used in [20℄. It is the spe
tral sequen
easso
iated to the double 
omplex ΘΓ
• ⊗ZΓ C•(X) 
omputing the hyperhomology, where we denote by

ΘΓ
• the bar resolution of the group Γ. This spe
tral sequen
e 
an be rewritten (see [20, 1.1℄) to yield

E1
p,q =

⊕

σ ∈Γ\Xp

Hq(Γσ; Z) =⇒ Hp+q(Γ; Z),



6 RAHM AND FUCHSwhere Γσ denotes the stabilizer of (the 
hosen representative for) the p-
ell σ. We have stated theabove E1-term with trivial Z-
oe�
ients in Hq(Γσ; Z), be
ause we use a fundamental domain whi
his stri
t enough to give X a 
ell stru
ture on whi
h Γ a
ts without inversion of 
ells. We shall alsomake extensive use of the des
ription of the d1-di�erential given in [20℄.The te
hni
al di�eren
e to the 
ases of trivial 
lass group, treated by [20℄, is that the stabilizers ofthe singular points are free abelian groups of rank two. In parti
ular, the Γ-a
tion on our 
omplex
X• is not a proper a
tion in the sense that all stabilizers are �nite. As a 
onsequen
e, the resultingspe
tral sequen
e does not degenerate on the E2-level as it does in S
hwermer and Vogtmann's 
ases.So we 
ompute a nontrivial di�erential d2, making some additional use of homologi
al algebra, inparti
ular the below lemma and its 
orollary.Remark 9. It would be possible to shift the te
hni
al di�
ulty away from homologi
al algebra, usinga topologi
al modi�
ation of our 
omplex. In our 
ases of 
lass number two, there is one singular pointin the fundamental domain, representing the nontrivial element of the 
lass group. Its stabilizer isfree abelian of rank two, and 
ontributes the homology of a torus to the zeroth 
olumn of the E2-termof our spe
tral sequen
e: H1(Z

2; Z) ∼= Z2, H2(Z
2; Z) ∼= Z and Hq(Z

2; Z) = 0 for q > 2. One 
ouldmodify our 
omplex in order to make the Γ-a
tion on it proper, by repla
ing ea
h singular point byan R2 with the former stabilizer Z2 now a
ting properly. Then the nontriviality of our di�erential isequivalent to the existen
e of a nontrivial homology relation indu
ed by adjoining the torus R2/Z2 tothe fundamental domain.The following lemma will be useful for 
omputing our d2-di�erential in the situations where 
y
lesfor Γσ are given in terms of the standard resolution of Γ instead of Γσ. In order to state it, let Γσbe a �nite subgroup of Γ, let M be a ZΓσ-module, and ℓ : Γ/Γσ → Γ a set-theoreti
al se
tion of thequotient map π : Γ → Γ/Γσ. Further, denote the standard bar resolution of a dis
rete group Γ by
ΘΓ

• . It will be 
onvenient to view ΘΓ
• as a 
omplex of ZΓ-right modules resp. ZΓσ-right modules.Thus, ΘΓ

q is de�ned as the free Z-module generated by the (q + 1)-tuples (γ0, . . . , γq) of elements of
Γ with the a
tion given by (γ0, . . . , γq).γ = (γ0γ, . . . , γqγ) and the same boundary operator as in theleft module 
ase, namely ∂ =

∑q
i=0(−1)idi where di(γ0, . . . , γq) = (γ0, . . . , γ̂i, . . . , γq).Lemma 10. The se
tion ℓ de�nes a map of ZΓσ-
omplexes

ε̂ℓ : ΘΓ
• −→ ΘΓσ

•of degree zero whi
h is a retra
tion of the resolution ΘΓ
• of the group Γ to the resolution ΘΓσ• of Γσ.For ea
h γ ∈ Γ, ℓ(π(γ)) is in the same orbit of the Γσ-right-a
tion on Γ as γ, so (ℓ(π(γ)))−1γ ∈ Γσ.The map ε̂ℓ is indu
ed on ΘΓ

0 = ZΓ by
Γ

εℓ−−→ Γσ → ZΓσ,

γ 7→ (ℓ(π(γ)))−1γand is 
ontinued as a tensor produ
t ε̂ℓ = εℓ ⊗ ...⊗ εℓ = ε
⊗(n+1)
ℓ on ΘΓ

n.Remark 11. (1) Sin
e the group Γσ a
ts from the right, the map εℓ is ZΓσ-linear.(2) Note that the resulting isomorphism in homology from H∗(ΘΓ
• ⊗ZΓσ M) to H∗(ΘΓσ• ⊗ZΓσ M) isindependent of the 
hoi
e of ℓ, and 
onsistent with the 
anoni
al isomorphisms of both sideswith H∗(Γσ; M).(3) Note that in the above lemma, it is not ne
essary to require ℓ(π(1)) = 1. This would implythat εℓ is the identity on ΘΓσ• . However, we will 
hoose ℓ(π(1)) = 1 for simpli
ity.(4) In expli
it terms, the map εℓ is des
ribed as follows:

εℓ : ZΓ→ ZΓσ,
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∑

γ∈Γ

aγγ =
∑

γσ∈Γσ

∑

ρ∈Γ/Γσ

aγσℓ(ρ)γσℓ(ρ) 7→
∑

γσ∈Γσ

( ∑

ρ∈Γ/Γσ

aγσℓ(ρ)

)
γσ,where the aγ are 
oe�
ients from Z. The map εℓ restri
ts to the identity on ZΓσ and givesan isomorphism of Z-modules from Z[ℓ(ρ)Γσ] to ZΓσ for every Γσ-orbit ℓ(ρ)Γσ.Proof (of the lemma). In fa
t, the statement holds for any 
hain map ε̂ in the pla
e of ε̂ℓ that satis�esthe following 
onditions. They are easily 
he
ked to hold for the maps ε̂ℓ.(1) ε̂ is ZΓσ-linear.(2) The augmentation ΘΓ

0 → Z is the 
omposition of ε̂ with the augmentation ΘΓσ

0 → Z.Then the statement follows from the 
omparison theorem [25, 2.2.6℄ of fundamental homologi
alalgebra. In fa
t, the properties imply that ε̂ is a 
hain map of resolutions lifting the identity on Z.An inverse is given by the 
anoni
al in
lusion ΘΓσ• → ΘΓ
• , and sin
e the 
omposition is unique up to
hain homotopy equivalen
e, it must be homotopi
 to the identity. �The group Γσ a
ts diagonally from the right on ΘΓ

1
∼= ZΓ ⊗Z ZΓ, and trivially on Z, so we 
an
onsider ΘΓ

1 ⊗ZΓσ Z. Denote the 
ommutator quotient map Γσ → (Γσ)ab ∼= H1(Γσ) by a 7→ a.Corollary 12. Consider a 
y
le for H1(Γσ; Z) of the form ∑
i(ai ⊗Z bi) ⊗ZΓσ 1 ∈ ΘΓ

1 ⊗ZΓσ Z where
ai, bi ∈ ZΓ. Assume that all ai and bi are elements of Γ. The ensuing homology 
lass is then given by

∑

i

εℓ(bi)εℓ(ai)−1 ∈ (Γσ)ab.By the linearity of the des
ribed map, this 
overs the general 
ase as the 
y
les of the form appearingin the 
orollary generate the submodule of all 
y
les. Note that the 
y
le 
ondition on ∑
i
(ai⊗Zbi)⊗ZΓσ1says that ∑

i
(bi − ai)⊗ZΓσ 1 = 0, whi
h means that ∑

i ai is equivalent to ∑
i bi modulo ZΓσ.Proof (of the 
orollary). Using lemma 10, we apply the map

(εℓ ⊗Z εℓ)⊗ZΓσ 1 : (ZΓ⊗Z ZΓ)⊗ZΓσ Z −→ (ZΓσ ⊗Z ZΓσ)⊗ZΓσ Zto get
∑

(εℓ ⊗Z εℓ ⊗ZΓσ 1)(ai ⊗Z bi ⊗ZΓσ 1) =
∑

(εℓ(ai)⊗Z εℓ(bi))⊗ZΓσ 1.Denote the augmentation ZΓσ → Z by ε. As ai ∈ Γ, we have εℓ(ai) ∈ Γσ whi
h is invertible in ZΓσ,and ε(εℓ(ai)) = 1. So the above term equals
∑(

1⊗Z εℓ(bi)(εℓ(ai))
−1

)
⊗ZΓσ ε(εℓ(ai)) =

∑(
1⊗Z εℓ(bi)(εℓ(ai))

−1
)
⊗ZΓσ 1,where we take into a

ount that the a
tion of ZΓσ on ZΓσ ⊗Z ZΓσ is the diagonal right a
tion, andthat of ZΓσ on Z is the trivial a
tion a · 1 = ε(a) for a ∈ ZΓσ. In bar notation, we thus obtain the
y
le ∑[

εℓ(bi)(εℓ(ai))
−1

]
⊗ZΓσ 1, whi
h is mapped to

∑

i

εℓ(bi)εℓ(ai)−1 ∈ (Γσ)abby the map des
ribed in [7, page 36℄; it is easy to 
he
k that an isomorphism H1(Θ
G
• ⊗G Z) ∼= Gab isdes
ribed by (1⊗ g)⊗G 1 = [g]⊗G 1 7→ g also in the 
ase where ΘG

• is a
ted on by G from the right.Moreover, this isomorphism is natural with respe
t to group in
lusions. �Another property of the spe
tral sequen
e is that a part of it 
an be 
he
ked whenever the ge-ometry of the fundamental domain and a presentation of Γ are known. As Flöge shows, an inspe
-tion of the 
omplex X and the asso
iated stabilizer groups and identi�
ations yields, together with



8 RAHM AND FUCHS[1, theorem 4.5℄, a presentation of Γ by means of generators and relations. We will use the presentation
omputed by Flöge for m = 5, 6, 10 and that 
omputed by Swan [23℄ for m = 15.Remark 13. Let us look at the low term short exa
t sequen
e
0 // E∞

0,1
// Γab ρ // E∞

1,0
// 0of the spe
tral sequen
e. We have E∞

1,0 = H1(Γ\X) = (π1(Γ\X))ab, and the proje
tion ρ is theabelianization of the map Γ→ π1(Γ\X) given as follows. Choose a �xed base point x ∈ X. For every
γ ∈ Γ, 
hoose a 
ontinuous path in X from x to γx. This gives a well-de�ned loop in Γ\X sin
e X is
ontra
tible.The abelianization of Γ 
an be immediately dedu
ed from its presentation. Thus, we 
an 
omputethe group E∞

0,1 = E3
0,1 as the kernel of the proje
tion ρ and 
he
k this with the result obtained fromdetailed analysis of the d2-di�erential.2.2. The homology of the �nite subgroups in the Bian
hi groups.In order to 
ompute the E1-term of the spe
tral sequen
e introdu
ed in se
tion 2.1, we will need theisomorphism 
lasses of the homology groups of the stabilizers.Lemma 14 (S
hwermer/Vogtmann [20℄). The only isomorphism 
lasses of �nite subgroups in PSL2(O)are the 
y
li
 groups of orders two and three, the trivial group, the Klein four-group D2

∼= Z/2×Z/2,the symmetri
 group S3 and the alternating group A4.The homology with trivial Z respe
tively Z/n-
oe�
ients, n = 2 or 3, of these groups is
Hq(Z/n; Z)∼=

8

>

<

>

:

Z, q = 0,

Z/n, q odd,

0, q even, q > 0;

Hq(Z/n; Z/n)∼= Z/n, q ∈ N ∪ {0};

Hq(D2; Z) ∼=

8

>

>

<

>

>

:

Z, q = 0,

(Z/2)
q+3
2 , q odd,

(Z/2)
q
2 , q even, q > 0;

Hq(D2; Z/2) ∼=(Z/2)q+1 Hq(D2; Z/3)=0, q > 1;

Hq(S3; Z) ∼=

8

>

>

>

>

>

<

>

>

>

>

>

:

Z, q = 0,

Z/2, q ≡ 1 mod 4,

0, q ≡ 2 mod 4,

Z/6, q ≡ 3 mod 4,

0, q ≡ 0 mod 4, q > 0;

Hq(S3; Z/3) ∼=

8

>

>

>

>

>

<

>

>

>

>

>

:

Z/3, q = 0,

0, q ≡ 1 mod 4,

0, q ≡ 2 mod 4,

Z/3, q ≡ 3 mod 4,

Z/3, q ≡ 0 mod 4, q > 0;

Hq(S3; Z/2)∼=Z/2, q ∈ N ∪ {0};

Hq(A4; Z) ∼=

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

Z, q = 0,

(Z/2)k ⊕ Z/3, q = 6k + 1,

(Z/2)k ⊕ Z/2, q = 6k + 2,

(Z/2)k ⊕ Z/6, q = 6k + 3,

(Z/2)k, q = 6k + 4,

(Z/2)k ⊕ Z/2 ⊕ Z/6, q = 6k + 5,

(Z/2)k+1, q = 6k + 6.

Hq(A4; Z/2) ∼=

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

Z/2, q = 0,

(Z/2)2k, q = 6k + 1,

(Z/2)2k+1, q = 6k + 2,

(Z/2)2k+2, q = 6k + 3,

(Z/2)2k+1, q = 6k + 4,

(Z/2)2k+2, q = 6k + 5,

(Z/2)2k+3, q = 6k + 6.

Hq(A4; Z/3)∼=Z/3, q ∈ N ∪ {0}.Using the Universal Coe�
ient Theorem, we see that in degrees q > 1, the homology with trivial
Z/4�
oe�
ients is isomorphi
 to the homology with trivial Z/2�
oe�
ients for the groups listed above.The stabilizers of the points inside H are �nite and hen
e of the above listed types. The stabilizers ofthe singular points are isomorphi
 to Z2, whi
h has homology Hq(Z

2; Z) ∼=
8

>

<

>

:

0, q > 3,

Z, q = 2,

Z2, q = 1.The maps indu
ed on homology by in
lusions of the stabilizers determine the d1-di�erentials of thespe
tral sequen
e from se
tion 2.1.Observation 15. The three images in H2(D2; Z/2) of the non-trivial element of H2(Z/2; Z/2) underthe maps indu
ed by the in
lusions of the three order-2-subgroups of D2 are linearly independent, butthe three images of the non-trivial element of H2(Z/2; Z/4) are linearly dependent in H2(D2; Z/4).More pre
isely, there is a 
anoni
al basis for H2(D2; Z/2) ∼= (Z/2)3 
oming from the resolution for D2
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iated to the de
omposition D2
∼= Z/2× Z/2. One 
he
ks by dire
t 
al
ulation thatin this basis, the in
lusions of the three order-2-subgroups in D2 indu
e the images

8

<

:

0,

0

@

1
0
0

1

A

9

=

;

, 8

<

:

0,

0

@

1
1
1

1

A

9

=

;

, and 8

<

:

0,

0

@

0
0
1

1

A

9

=

;

in H2(D2; Z/2);and in the basis 
oming from the same resolution used for Z/4�
oe�
ients these images are
8

<

:

0,

0

@

1
0
0

1

A

9

=

;

, 8

<

:

0,

0

@

1
0
1

1

A

9

=

;

, and 8

<

:

0,

0

@

0
0
1

1

A

9

=

;

in H2(D2; Z/4).The di�eren
e between the 
ases Z/2 and Z/4 
omes from the behavior of the kernels of thedi�erential maps.Lemma 16 (S
hwermer/Vogtmann [20℄). Let C ∈ {Z}∪{Z/n : n = 2, 3, 4}. Consider group homologywith trivial C-
oe�
ients. Then the following hold.(1) Any in
lusion Z/2→ S3 indu
es an inje
tion on homology.(2) An in
lusion Z/3 → S3 indu
es an inje
tion on homology in degrees 
ongruent to 3 or 0
mod 4, and is zero otherwise.(3) Any in
lusion Z/2→ D2 indu
es an inje
tion on homology in all degrees.(4) An in
lusion Z/3→ A4 indu
es inje
tions on homology in all degrees.(5) In the 
ase C ∈ {Z}∪{Z/n : n = 2, 3}, an in
lusion Z/2→ A4 indu
es inje
tions on homologyin degrees greater than 1, and is zero on H1.In the 
ase C = Z/4, the same holds in homology degrees q 6= 2.An in
lusion Z/2→ A4 indu
es the zero map on H2(−; Z/4).Sket
h of proof. S
hwermer and Vogtmann prove this for C = Z, and leave it to the reader in the 
ase

C = Z/2. Details for the latter 
ase 
an be found in [19℄. In the following, we are going to give themain arguments.(1) This follows for all 
oe�
ients from the fa
t that the group extension
1→ Z/3→ S3 → Z/2→ 1 has the property that any in
lusion, Z/2→ S3, 
omposed with itsquotient map is the identity on Z/2.(2) The assertion is trivial for C ∈ {Z/2, Z/4} be
ause then Hq(Z/3; C) = 0 for q > 1 bythe Universal Coe�
ient Theorem. For C = Z/3, one 
omputes the Lyndon/Ho
hs
hild/Serrespe
tral sequen
e with Z/3-
oe�
ients asso
iated to the extension 1→ Z/3→ S3 → Z/2→ 1.Its E2-term E2

p,q = Hp(Z/2; Hq(Z/3; Z/3)) is 
on
entrated in the 
olumn p = 0; spe
ial 
arehas to be taken with the a
tion of Z/2 on Hq(Z/3; Z/3). So E2
p,q
∼= E∞

p,q, and the assertionfollows from a 
omputation of the map Hq(Z/3; Z/3)→ H0(Z/2; Hq(Z/3; Z/3)), i. e. theproje
tion onto the 
oinvariants.(3) Similar to (1), this is an immediate 
onsequen
e of the fa
t that 1 → Z/2 → D2 → Z/2 → 1splits.(4) Similar to (1) and (3), this follows for all 
oe�
ients from the fa
t that any in
lusion Z/3→ A4
omposed with the unique quotient map A4 → Z/3 is an isomorphism, hen
e indu
es anisomorphism in homology.(5) The assertion is trivial for C = Z/3 be
ause then Hq(Z/2; C) = 0 for q > 1. For C ∈ {Z/2, Z/4},one 
onsiders the fa
torization of the in
lusion Z/2→ A4 as Z/2→ D2 → A4 where the �rstmap is one out of three possible in
lusions Z/2→ D2, denoted by α, β, γ. By (3), α, β and γindu
e inje
tions. Furthermore, one 
onsiders the spe
tral sequen
e with C-
oe�
ients asso-
iated to the extension 1 → D2 → A4 → Z/3 → 1. Similar to the 
ase 
onsidered in (2), the
E2-term E2

p,q = Hp(Z/3; Hq(D2; C)) is 
on
entrated in the 
olumn p = 0, thus E2
p,q
∼= E∞

p,q,and the map Hq(Z/2; C)→ Hq(A4; C) is written as the 
omposition
Hq(Z/2; C)→ Hq(D2; C)→ H0(Z/3; Hq(D2; C)) ∼= Hq(A4; C)



10 RAHM AND FUCHSwhere the �rst map is α∗, β∗ or γ∗ and the se
ond one is the proje
tion onto the Z/3-
oinvariants. From this, the statement 
an be dire
tly dedu
ed for q 6= 2. For the 
ase
q = 2, denote the generator of H2(Z/2; C) by x. The a
tion of Z/3 on D2 
omes from
onjugation within A4 and permutes the three non-trivial elements. There is an automor-phism φ of D2 given by the a
tion of a generator of Z/3, su
h that φ ◦ α = β. Then
φ∗(α∗(x)) = (φ ◦ α)∗(x) = β∗(x) and φ∗(β∗(x)) = γ∗(x). For C = Z/4, observation 15implies that α∗(x) = γ∗(x)− β∗(x) = γ∗(x)− (φ2)∗(γ∗(x)), and thus α∗(x) is in Im(1− φ∗) =Im(1−(φ2)∗), hen
e is zero in the 
oinvariants. Therefore, the same holds for β∗(x) and γ∗(x),and the assertion follows. For C = Z/2, one 
omputes with the help of observation 15 that
α∗(x) 6∈ Im(1− φ∗); thus, the same holds for β∗(x) and γ∗(x) and the assertion follows.

�2.3. The mass formula for the equivariant Euler 
hara
teristi
.We will use the Euler 
hara
teristi
 to 
he
k the geometry of the quotient Γ\X. Re
all the followingde�nitions and proposition, whi
h we in
lude for the reader's 
onvenien
e.De�nition 17 (Euler 
hara
teristi
). Suppose Γ′ is a torsion-free group. Then we de�ne its Euler
hara
teristi
 as
χ(Γ′) =

∑

i

(−1)i dim Hi(Γ
′; Q).Suppose further that Γ′ is a torsion-free subgroup of �nite index in a group Γ. Then we de�ne theEuler 
hara
teristi
 of Γ as

χ(Γ) =
χ(Γ′)
[Γ : Γ′]

.This is well-de�ned be
ause of [7, IX.6.3℄.De�nition 18 (Equivariant Euler 
hara
teristi
). Suppose X is a Γ-
omplex su
h that(1) every isotropy group Γσ is of �nite homologi
al type;(2) X has only �nitely many 
ells mod Γ.Then we de�ne the Γ-equivariant Euler 
hara
teristi
 of X as
χΓ(X) :=

∑

σ

(−1)dimσχ(Γσ),where σ runs over the orbit representatives of 
ells of X.Proposition 19 ([7, IX.7.3 e'℄). Suppose X is a Γ-
omplex su
h that χΓ(X) is de�ned. If Γ is virtuallytorsion-free, then Γ is of �nite homologi
al type and χ(Γ) = χΓ(X).Let now Γ be PSL2

(
O

Q[
√
−m ]

). Then the above proposition applies to X taken to be Flöge's(or still, Mendoza's) Γ-equivariant deformation retra
t of H, be
ause Γ is virtually torsion-free bySelberg's lemma. Using χ(Γσ) = 1
card(Γσ) for Γσ �nite, the fa
t that the singular points have stabilizer

Z2, and the torsion-free Euler 
hara
teristi

χ(Z2) =

∑

i

(−1)irankZ(Hi Z2) = 1− 2 + 1 = 0,we get the formula
χ(Γ) =

∑

σ

(−1)dimσ 1

card(Γσ)
,where σ runs over the orbit representatives of 
ells of X with �nite stabilizers.Proposition 20. The Euler 
hara
teristi
 χ(Γ) vanishes.
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0 =

∑

σ

(−1)dimσ 1

card(Γσ)
,allows to 
he
k the joint data of the geometry of the fundamental domain, 
ell stabilizers and 
ellidenti�
ations.Proof of proposition 20. Denote by ζK the Dedekind ζ-fun
tion asso
iated to the number �eld

K := Q
[√−m

]. Brown [7, below (IX.8.7)℄ dedu
es the following from Harder's result [13, p. 453℄:
χ(SLn(OK)) =

n∏

j=2

ζK(1− j),so espe
ially we have χ(SL2(OK)) = ζK(−1). As Γ is a quotient of SL2(OK) by a group of order two,it follows [4℄ that
χ(Γ) = 2 · χ(SL2(OK)) = 2 · ζK(−1).Using the fun
tional equation of ζK [17℄ and the fa
t that K has no real embeddings be
ause it isimaginary quadrati
, we get ζK(−1) = 0. �Remark 22. One 
an prove the above proposition without using the Dedekind zeta fun
tion. Thisalternative proof applies to any 
o�nite arithmeti
ally de�ned subgroup Γ of PSL(2, C). Let Γ′denote a torsion-free subgroup of Γ of �nite index. It is the main theorem of Harder's arti
le onthe Gauss-Bonnet theorem [13℄ that the Euler 
hara
teristi
 of Γ′ is its 
ovolume with respe
t to theEuler-Poin
aré form µ on H, i. e. χ(Γ′) =

∫
Y dµ, where Y is a fundamental domain for the a
tion of Γ′on H. This extends the 
lassi
al Gauss-Bonnet theorem from the theory of the Euler-Poin
aré form,see [21, paragraph 3℄ (where the theorem is hidden as the existen
e assertion of the Euler-Poin
arémeasure) to non-
o
ompa
t but 
o�nite dis
rete subgroups. The measure µ is a fundamental datumasso
iated to the symmetri
 spa
e, without referen
e to any dis
rete group. In [21, paragraph 3,2a℄ itis shown that µ = 0 on any odd-dimensional spa
e. Sin
e dim H = 3, we have χ(Γ′) = χ(Γ) = 0.3. Computations of the integral homology of PSL2

(
O

Q[
√
−m ]

)Throughout this se
tion, the a
tion on the homology 
oe�
ients is trivial be
ause the stabilizers �xthe 
ells pointwise. We mean Z-
oe�
ients wherever we do not mention the 
oe�
ients. Throughout,we label the singular point in the fundamental domain by s and use the notation
⊗σ := ⊗Z[Γσ ].We write D2 for the Klein four group, S3 for the permutation group on three obje
ts and A4 for thealternating group on four obje
ts.We have Γ = PSL2(OQ[

√
−m ]) = PSL2(Z[ω]) with ω :=

√−m in the 
ases m = 5, 6, 10, 13. The
oordinates in hyperboli
 spa
e of the verti
es of the fundamental domains have been 
omputed byBian
hi [6℄. There, they are listed up to 
omplex 
onjugation for m = 5, 6, 15; and for m = 10, 13,the reader has to divide out the re�e
tion 
alled ri�essione impropria by Bian
hi.
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Figure 2: Thefundamental do-main for m = 13

3.1. m = 13. We make the following de�nitions.
A := ±

„

9 7ω
ω −10

«

, B := ±
„

−2 − ω 2 − ω
4 2 + 1ω

«

, C := ±
„

−1 − ω 8 − ω
3 1 + 2ω

«

,

D := ±
„

5 2ω
ω −5

«

, E := ±
„

−ω 6
2 ω

«

, J := ±
„

1
−1

«

,

S := ±
„

−1
1 1

«

, K := ±
„

11 + 4ω −17 + 7ω
−8 + ω −10 − 3ω

«

, M := ±
„

4 − 2ω 12 + ω
4 + ω −4 + 2ω

«

,

U := ±
„

1 ω
1

«

, V := ±
„

−ω 6 − ω
2 2 + ω

«

, W := ±
„

14 − ω 13 + 6ω
2ω −12 + ω

«

,

P := V −1D, T := P−1S2, R := TU−1S2U.Verti
es with the same letter in the fundamental domain displayed in�gure 2 are identi�ed by the a
tion of Γ, for instan
e, y is identi�edwith y′ and y′′ and so on. This yields relations between the matri-
es in the same way as shown by [10℄. Amongst these relations, wewill use T = CKCA(CKC)−1, V −1 = CAC−1M and S2 = BS−1BSin our further 
al
ulations, in parti
ular in the 
omputation of the d2-di�erential. Note that the 2-
ell (y′′, a′′, u′, x′, b′′, v′′) is identi�ed with the 2-
ell (y, a, u, x, b, v), hen
e only one of them 
an be in the fundamental do-main. The matrix U a
ts as a verti
al translation by −ω. Furthermore,we will use the identi�
ations C · x′ = x, U · j′ = j, C · y′ = y and
K · z = z′.Amongst the edge identi�
ations, we will use CAC−1 · (c, z) = (c′, z), V −1 · (s, c) = (s, c′),
CAC−1 · (b, x) = (b′, x), V −1 · (b, v) = (b′, v′), P · (y, v) = (y′, v′), S2 · (a, y) = (a′, y′), and
B · (a, u) = (a′, u). There are seventeen orbits of verti
es, whi
h have the following stabilizers.

Γo = 〈J |J2 = 1〉 ∼= Z/2,
Γa = 〈S−1BS|(S−1BS)2 = 1〉 ∼= Z/2,
Γb = Γc = 〈M |M2 = 1〉 ∼= Z/2,
Γu = 〈B|B2 = 1〉 ∼= Z/2,
Γv = 〈D|D2 = 1〉 ∼= Z/2,
Γf = 〈D, E|D2 = E2 = (DE)2 = 1〉 ∼= D2,
Γh = 〈E, AU−1JU |E2 = (AU−1JU)2 = (EAU−1JU)2 = 1〉 ∼= D2,
Γe = 〈A, U−1JU |A3 = (U−1JU)2 = (AU−1JU)2 = 1〉 ∼= S3,
Γg = 〈J, T |J2 = T 3 = (JT )2 = 1〉 ∼= S3,
Γt = 〈R, U−1SU |R2 = (U−1SU)3 = (RU−1SU)2 = 1〉 ∼= S3,
Γw = 〈B, S|B2 = S3 = (BS)2 = 1〉 ∼= S3,
Γj = 〈S|S3 = 1〉 ∼= Z/3,
Γx = Γz = 〈CAC−1|(CAC−1)3 = 1〉 ∼= Z/3,
Γy = 〈T |T 3 = 1〉 ∼= Z/3,
Γs = 〈V, W |V W = WV 〉 ∼= Z2.There are twenty-eight orbits of edges.The edge stabilizers isomorphi
 to Z/3 are given on the 
hosen representatives as

Γ(e,x′) = 〈A|A3 = 1〉 ∼= Z/3,

Γ(x,z) = 〈CAC−1|(CAC−1)3 = 1〉 ∼= Z/3,

Γ(g,y) = 〈T |T 3 = 1〉 ∼= Z/3,

Γ(j,w) = 〈S|S3 = 1〉 ∼= Z/3,

Γ(t,j′) = 〈U−1SU |(U−1SU)3 = 1〉 ∼= Z/3,

Γ(y′,z′) = 〈KCA(KC)−1|(KCA(KC)−1)3 = 1〉 ∼= Z/3,



INTEGRAL HOMOLOGY OF PSL2 OF IMAGINARY QUADRATIC INTEGERS 13and the edge stabilizers isomorphi
 to Z/2 are given on the 
hosen representatives as
Γ(f,v) = 〈D|D2 = 1〉 ∼= Z/2,

Γ(h,u′) = 〈EAU−1JU |(EAU−1JU)2 = 1〉 ∼= Z/2,

Γ(t,b′′) = 〈R|R2 = 1〉 ∼= Z/2,

Γ(w,a) = 〈S−1BS|(S−1BS)2 = 1〉 ∼= Z/2,

Γ(b,c) = 〈M |M2 = 1〉 ∼= Z/2,

Γ(a′′,c′′) = 〈C−1S−1BSC|(C−1S−1BSC)2 = 1〉 ∼= Z/2,

Γ(v′,t) = 〈RU−1SU |(RU−1SU)2 = 1〉 ∼= Z/2,

Γ(w,u) = 〈B|B2 = 1〉 ∼= Z/2,

Γ(h,e) = 〈AU−1JU |(AU−1JU)2 = 1〉 ∼= Z/2,

Γ(g,f) = 〈DE|(DE)2 = 1〉 ∼= Z/2,

Γ(f,h) = 〈E|E2 = 1〉 ∼= Z/2,

Γ(o,g) = 〈J |J2 = 1〉 ∼= Z/2,

Γ(o′,e) = 〈U−1JU |(U−1JU)2 = 1〉 ∼= Z/2.We �nd nine edge orbits with the trivial stabilizer, thirteen edge orbit representatives with sta-bilizer type Z/2, and six with stabilizer type Z/3. The singular vertex has stabilizer type
Z2, and there are six vertex orbit representatives with stabilizer type Z/2, two with D2, fourwith S3 and four with Z/3. Furthermore, there are twelve orbits of fa
es with trivial stabilizers.The above data gives the Γ-equivariant Euler 
hara
teristi
 of X, in a

ordan
e with remark 21:

χΓ(X) =
6

2
+

4

3
+

2

4
+

4

6
− 9− 13

2
− 6

3
+ 12 = 0.3.1.1. The bottom row of the E1-term. Figure 3: (d1

1,q)(2)

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 1...
1 1

1 1...
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1 1
1 1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

We obtain for the row q = 0 in the 
olumns p = 0, 1, 2:
Z17

d1
1,0←−−− Z28

d1
2,0←−−− Z12,where the only o

urring elementary divisor is 1, withmultipli
ity sixteen for d1

1,0, and with multipli
ity tenfor d1
2,0.3.1.2. The odd rows of the E1-term.We set the goal to determine the morphism

⊕
σ∈Γ\X0 Hq(Γσ)

d1
1,q←−−−⊕

σ∈Γ\X1 Hq(Γσ) for odd q > 1.By lemma 14, the torsion only o

urs at the primes2 and 3. For ea
h m, we are going to treat theseprimes separately. For ea
h of them, lemma 16spe
i�es the e�e
t on homology of the vertex in
lu-sion,thus allowing us to determine the matrix of d1
1,q in the basis determined by the edge respe
tivelyvertex stabilizers in a row-by-row fashion. For m = 13 and odd q, the map d1

1,q is on the 2-primarypart a homomorphism (Z/2)q+13 ←− (Z/2)13 given by the q+13-by-13 matrix in �gure 3, where werepla
e the dotted entries � ... � by q−1
2 lines with a �1� in the 
olumn of the dots, and zeroes in therest of these lines. Therefore, we have to distinguish the 
ase q = 1, where d1

1,q has rank 12,and the 
ase q > 3, where it has rank 13.On the 3-primary part, d1
1,q is a homomorphism {

(Z/3)4 ←− (Z/3)6 for q ≡ 1 mod 4,

(Z/3)8 ←− (Z/3)6 for q ≡ 3 mod 4.



14 RAHM AND FUCHS Figure 4: (d1
1,q)(3)

(e, x′) (g, y) (x, z) (y′, z′) (j, w) (t, j′)

e −α 0 0 0 0 0
x 1 0 −1 0 0 0
g 0 −α 0 0 0 0
y 0 1 0 −1 0 0
z 0 0 1 1 0 0
j 0 0 0 0 −1 1
w 0 0 0 0 α 0
t 0 0 0 0 0 −α,

It is given by the matrix displayed in �gure 4, where
α = 1 for q ≡ 3 mod 4 and α = 0 else. This matrixhas full rank 6 (inje
tivity) for q ≡ 3 mod 4, and rank4 (surje
tivity) for q ≡ 1 mod 4. For q = 1, there isan additional module H1(Γs) ∼= Z2 on the target side,whi
h 
an not be hit be
ause the edge stabilizers areonly torsion.Remark 23. So, the 3-torsion in H1(Γ) has alreadybeen killed by the d1 di�erential. This is useful for show-ing that the map
H1(PSL2(Z))→ H1(Γ)is not inje
tive. In fa
t, the matrix S of order 3 de�nes a non-zero element in the abelianization of
PSL2(Z) but be
omes subje
t to the relation S2 = BS−1BS in Γ where B is the matrix of order twode�ned above. Thus, the 
lass of S is zero in Γab.3.1.3. The even rows of the E1-term.There is a zero map arriving at ⊕

σ∈Γ\X0

Hq(Γσ) ∼= (Z/2)q for q bigger than 2, and respe
tively at
⊕

σ∈Γ\X0

H2(Γσ) ∼= Z⊕ (Z/2)2.3.1.4. The E2-term.In the rows with q > 2, E2
p,q is 
on
entrated in the 
olumns p = 0 and p = 1 given as follows:

q = 4k + 1, q > 5 (Z/2)q (Z/3)2

q even, q > 4 (Z/2)q 0
q = 4k + 3, q > 3 (Z/3)2 ⊕ (Z/2)q 0
. . . . . . . . .
q = 2 Z ⊕ (Z/2)2 0In the rows q = 0 and q = 1, E2

p,q is 
on
entrated in the 
olumns p = 0, 1, 2:
q = 1 Z2 ⊕ (Z/2)2 (Z/3)2 ⊕ Z/2 0

q = 0 Z Z2 Z2

d2

kkVVVVVVVVVVVVVVVVVVVVVV3.1.5. The di�erential d2.The only nontrivial d2-arrow is determined on the E0-level by the following maps 
onne
ting E0
2,0with E0

0,1:
L

σ∈Γ\X0

Θ1 ⊗σ Z
L

σ∈Γ\X1

Θ1 ⊗σ Z1⊗δoo

dΘ⊗1

��
L

σ∈Γ\X1

Θ0 ⊗σ Z
L

σ∈Γ\X2

Θ0 ⊗σ Z1⊗δoowhere dΘ is the di�erential of the bar resolution Θ• for Γ, and δ is the di�erential of Flöge's 
ellular
omplex. The generators of the abelian group E2
2,0
∼= Z2 are represented by the fa
e (c, s, c′, z) andthe union of two fa
es (b, x, b′, v′, y′, a′, u, a, y, v) =: F , whose quotients by Γ are homeomorphi
 to2-spheres.Using the identi�
ations stated in 3.1, we 
ompute that the above d2-arrow is indu
ed by

δ
(
(c, s, c′, z)

)
= (CAC−1 − 1) · (c, z) + (V −1 − 1) · (s, c)
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δ

`

(b, x, b′, v′, y′, a′, u, a, y, v)
´

= (CAC−1 − 1) · (x, b) + (V −1 − 1) · (b, v) + (P − 1) · (v, y) + (S2 − 1) · (y, a) + (B − 1) · (a, u).The lift 1⊗F 1 in E0
2,0 of the generator of E2

2,0 represented by
F = (b, x, b′, v′, y′, a′, u, a, y, v) is mapped as follows:

(1, CAC−1) ⊗b 1 − (1, CAC−1) ⊗x 1
+(1, V −1) ⊗v 1 − (1, V −1) ⊗b 1

+(1, P ) ⊗y 1 − (1, P ) ⊗v 1
+(1, S2) ⊗a 1 − (1, S2) ⊗y 1
+(1, B) ⊗u 1 − (1, B) ⊗a 1

(1, CAC−1) ⊗(x,b) 1

+(1, V −1) ⊗(b,v) 1

+(1, P ) ⊗(v,y) 1

+(1, S2) ⊗(y,a) 1

+(1, B) ⊗(a,u) 1

1⊗δoo

dΘ⊗1

��
(CAC−1 − 1) ⊗(x,b) 1

+(V −1 − 1) ⊗(b,v) 1

+(P − 1) ⊗(v,y) 1

+(S2 − 1) ⊗(y,a) 1

+(B − 1) ⊗(a,u) 1

1 ⊗F 1
1⊗δooThe passage to E1.We attribute the symbols tσ to the part of this sum lying in Θ1 ⊗σ Z:

tx := −(1, CAC−1)⊗x 1,
tb := (1, CAC−1)⊗b 1− (1, V −1)⊗b 1,
tv := (1, V −1)⊗v 1− (1, P ) ⊗v 1,
ty := (1, P ) ⊗y 1− (1, S2)⊗y 1,
ta := (1, S2)⊗a 1− (1, B)⊗a 1,
tu := (1, B) ⊗u 1.With the formula in our 
orollary 12, we �nd the 
lasses t̄σ in H1(Θ∗ ⊗σ Z) as follows:As V −1M = CAC−1 and Γb = 〈M | M2 = 1〉,

tb = [CAC−1]⊗b 1− [V −1]⊗b 1 = [V −1M ]⊗b 1− [V −1]⊗b 1gives the 
y
le
V V −1M − V V −1 = M ∈ 〈M | 2M = 0〉 ∼= H1(Γb; Z).As V −1 = PD and Γv = 〈D| D2 = 1〉,

tv = [V −1]⊗v 1− [P ]⊗v 1 = [PD]⊗v 1− [P ]⊗v 1gives the 
y
le
P−1PD − P−1P = D ∈ 〈D| 2D = 0〉 ∼= H1(Γv; Z).As S2 = BS−1BS and Γa = 〈S−1BS| (S−1BS)2 = 1〉,

ta = [S2]⊗a 1− [B]⊗a 1 = [BS−1BS]⊗a 1− [B]⊗a 1gives the 
y
le
B−1BS−1BS −B−1B = S−1BS ∈ 〈S−1BS| 2S−1BS = 0〉 ∼= H1(Γa; Z).Finally, tu = [B]⊗u 1 gives the 
y
le

B ∈ 〈B| 2B = 0〉 ∼= H1(Γu; Z).The term E2
0,1 has no 3-torsion, so the 3-torsion part t̄x + t̄y of the above sum makes no 
ontributionto the image of d2.The 2-torsion part, tb + ta + tv + tu, equals the image

d1
1,1(t(b,c) + t(c′′,a′′) + t(v,f) + t(f,h) + t(h,u′)),



16 RAHM AND FUCHSwhere tσ stands for the generator of H1(Γσ; Z) ∼= Z/2. Thus it is a boundary and is quotiented tozero on the E2-page. Hen
e it makes no 
ontribution either to the image of d2, so we obtain that
d2(F ) = 0.The lift 1⊗(c,s,c′,z) 1 of the generator (c, s, c′, z) is mapped as follows:

(1, CAC−1) ⊗z 1
−(1, CAC−1) ⊗c 1

+(1, V −1) ⊗c 1
−(1, V −1) ⊗s 1

(1, CAC−1) ⊗(c,z) 1

+(1, V −1) ⊗(s,c) 1

1⊗δoo

dΘ⊗1

��
(CAC−1 − 1) ⊗(c,z) 1

+(V −1 − 1) ⊗(s,c) 1
1 ⊗(c,s,c′,z) 1

1⊗δooThe passage to E1.We attribute the symbols tσ to the part of this sum lying in Θ1 ⊗σ Z:
tz := (1, CAC−1)⊗z 1,
tc := (1, V −1)⊗c 1− (1, CAC−1)⊗c 1,
ts := −(1, V −1)⊗s 1.With the formula in our 
orollary 12, we �nd the 
lasses t̄σ in H1(Θ∗ ⊗σ Z) as follows:As V −1M = CAC−1 and Γc = 〈M | M2 = 1〉,

tc = [V −1]⊗c 1− [CAC−1]⊗c 1 = [V −1]⊗c 1− [V −1M ]⊗c 1gives the 
y
le
V V −1 − V V −1M = −M ∈ 〈M | 2M = 0〉 ∼= H1(Γc; Z).Finally,

ts = −[V −1]⊗s 1gives the 
y
le
V ∈ 〈V ,W 〉 ∼= H1(Γs; Z) ∼= Z2.The term E2

0,1 has no 3-torsion, so the 3-torsion part tz of the above sum makes no 
ontribution tothe image of d2.However the 2-torsion part, tc = M , passes to the E2-page be
ause no 
hain of edges 
an have the singlepoint c as its boundary. Furthermore, V is one of the generators of the free part of E2
0,1
∼= Z2⊕(Z/2)2,so we obtain d2 ((c, s, c′, z)) = M + V , whi
h is of in�nite order and has the following property: thereis no element η ∈ E2

0,1 with kη = M + V for an integer k > 1. As we have seen that d2(F ) = 0, weobtain the quotient
E3

0,1
∼= Z⊕ (Z/2)2.Hen
e we obtain for integral homology the following short exa
t sequen
es:






0→ (Z/2)q → Hq(Γ; Z)→ (Z/3)2 → 0, q = 4k + 2,

0→ (Z/2)q → Hq(Γ; Z)→ 0, q = 4k + 1,

0→ (Z/2)q → Hq(Γ; Z)→ 0, q = 4k + 4,

0→ (Z/3)2 ⊕ (Z/2)q → Hq(Γ; Z)→ 0, q = 4k + 3,

0→ Z⊕ (Z/2)2 → H2(Γ; Z)→ Z⊕ (Z/3)2 ⊕ Z/2→ 0,

0→ Z⊕ (Z/2)2 → H1(Γ; Z)→ Z2 → 0.We will resolve the ambiguity in the torsion part of the group extension H2(Γ; Z) by a re�e
tion likethe one on [20, page 587℄, for whi
h we have to re
ompute the spe
tral sequen
e with Z/2�, Z/3� and
Z/4�
oe�
ients. The free part is unambiguous, as we 
an see from tensoring with Q.
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oe�
ients.We 
an apply the fun
tor −⊗ Z/2 to the row q = 0 and obtain in the 
olumns p = 0, 1, 2:
(Z/2)17

d1
1,0←−−− (Z/2)28

d1
2,0←−−− (Z/2)12.The rest of this row are zeroes. The matrix d1

1,0 has rank 16 and the matrix d1
2,0 has rank 10.In the rows with q > 0, the di�erential d1 is given by a single arrow d1

1,q from
E1

1,q
∼= (Hq(Z/2; Z/2))13 ⊕ (Hq(Z/3; Z/2))6 ∼= (Z/2)13 to

E1
0,q
∼= Hq(Z

2; Z/2)⊕ (Hq(Z/2; Z/2))6 ⊕ (Hq(D2; Z/2))2 ⊕ (Hq(S3; Z/2))4,and the rest of these rows are zeroes. For q = 1, we have d1
1,1 of rank 12 arriving at E1

0,1
∼= (Z/2)16. For

q > 3, we have d1
1,q of rank 13 arriving at E1

0,q
∼= (Z/2)12+2q . For q = 2, we have d1

1,2 of rank 13 arrivingat E1
0,2
∼= (Z/2)17. The only di�
ulty in seeing this is to 
ompare the maps from Hq(Z/2; Z/2) to

Hq(D2; Z/2) indu
ed by the di�erent in
lusions Z/2→ D2; we use observation 15 for this purpose.3.1.7. The E2-term with Z/2-
oe�
ients.We obtain in the rows with q > 2 the E2-term 
on
entrated in the 
olumn p = 0,
q > 3 (Z/2)2q−1

q = 2 (Z/2)4,and in the rows q = 0, q = 1 it is 
on
entrated in the 
olumns p = 0, 1, 2:
q = 1 (Z/2)4 Z/2 0

q = 0 Z/2 (Z/2)2 (Z/2)2.

d2
2,0

iiTTTTTTTTTTTTTTTTTThe di�erential d2
2,0 with Z/2-
oe�
ients.The basis {(c, s, c′, z), F} of E2

2,0 with Z-
oe�
ients indu
es a basis of E2
2,0 with Z/2-
oe�
ients. TheUniversal Coe�
ient Theorem yields an isomorphism from H1(Γσ; Z)⊗Z Z/2 to H1(Γσ; Z/2), whi
hwe will use to transfer the elements tσ ∈ H1(Γσ; Z) 
omputed in subse
tion 3.1.5 to H1(Γσ; Z/2).For d2

2,0((c, s, c
′, z)) the 
omputation is as follows. As tc generates H1(Γc; Z) ∼= Z/2, it is transferredto the generator of H1(Γc; Z/2) ∼= Z/2. Sin
e ts 
an be 
ompleted with a se
ond element to a Z-basisof H1(Γs; Z) ∼= Z2, it is transferred to a nontrivial element of H1(Γs; Z/2) ∼= (Z/2)2. The element tzvanishes be
ause H1(Γz; Z)⊗Z/2 ∼= Z/3⊗Z/2 = 0. The sum tc+ts is quotiented to a nontrivial elementon the E2-page be
ause H1(Γs; Z/2) is not hit by the d1-di�erential. So d2

2,0(〈(c, s, c′, z)〉) ∼= Z/2.For d2
2,0(F ), the 
omputation is as follows. Sin
e the 3-torsion vanishes when tensored with Z/2,the 3-torsion part t̄x + t̄y of the sum makes no 
ontribution to the image of d2. The 2-torsion part,

tb + ta + tv + tu, equals the image
d1
1,1(t(b,c) + t(c′′,a′′) + t(v,f) + t(f,h) + t(h,u′)),where tσ, σ ∈ {b, a, v, u, (b, c), (c′′ , a′′), (v, f), (f, h), (h, u′)} is the generator of H1(Γσ; Z/2) ∼= Z/2.Hen
e it makes no 
ontribution neither, and we obtain d2(F ) = 0. Thus d2

2,0 has rank 1.As Z/2-modules are ve
tor spa
es over the �eld with two elements F2, the E3 = E∞-page yieldsimmediately the results. We do an analogous 
omputation with Z/3� and Z/4�
oe�
ients and obtain
dimF2 Hq(Γ; Z/2) =

{
2q − 1, q > 3,

6, q = 2,

5, q = 1,

dimF3 Hq(Γ; Z/3) =

{
2, q ≡ 0 or 2 mod 4, q > 2,

4, q ≡ 3 mod 4,

0, q ≡ 1 mod 4, q > 2;



18 RAHM AND FUCHSand the exa
t sequen
e 1→ (Z/2)5 → H3(Γ; Z/4)→ Z/2→ 1. The short exa
t sequen
e
1→ Z⊕ (Z/2)2 → H2(Γ; Z)→ Z⊕ (Z/3)2 ⊕ Z/2→ 1tells us that H2(Γ; Z) is one of the group extensions 8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

Z2 ⊕ (Z/3)2 ⊕ (Z/2)3 ,

Z2 ⊕ (Z/3)2 ⊕ (Z/2)2 ,

Z2 ⊕ Z/3 ⊕ (Z/2)3,

Z2 ⊕ (Z/3)2 ⊕ Z/2 ⊕ Z/4,

Z2 ⊕ Z/3 ⊕ Z/2 ⊕ Z/4.Using the Universal Coe�
ient Theorem in the form
Hq(Γ; Z/n) ∼= Hq(Γ; Z)⊗ (Z/n)⊕ TorZ

1 (Hq−1(Γ; Z), Z/n)with n = 2, 3 and 4, we 
an now eliminate all the wrong answers and retain
Hq(PSL2(O−13); Z) ∼=






Z3 ⊕ (Z/2)2, q = 1,

Z2 ⊕ Z/4⊕ (Z/3)2 ⊕ Z/2, q = 2,

(Z/2)q ⊕ (Z/3)2, q = 4k + 3, k > 0,

(Z/2)q, q = 4k + 4, k > 0,

(Z/2)q, q = 4k + 1, k > 1,

(Z/2)q ⊕ (Z/3)2, q = 4k + 2, k > 1.3.2. m = 5. We will make use of the following matri
es, whi
h agree with those in [10℄:
A:= ±

„

−1
1

«

, B:= ±
„

−ω 2
2 ω

«

, M := ±
„

−ω 4
1 ω

«

, S :=±
„

−1
1 1

«

,

U := ±
„

1 ω
1

«

, V := ±
„

−ω 2 − ω
2 2 + ω

«

, W :=±
„

6 − ω 5 + 2ω
2ω ω − 4

«

.These are subje
t to the relations UMU−1 = A, UWS(UW )−1 = S, WABW−1 = MB and S = ABV .A fundamental domain is displayed in �gure 5. There are �ve orbits of verti
es, with stabilizers

v1

a3

a1

a2b

u

u1

s

v

a

Figure 5: Thefundamental do-main for m = 5

Γb = 〈A, B|A2 = B2 = 1〉 ∼= D2,
Γu = 〈B, M |B2 = M2 = 1〉 ∼= D2,
Γa = 〈AB|AB2 = 1〉 ∼= Z/2,
Γv = 〈S|S3 = 1〉 ∼= Z/3,
Γs = 〈V, W |V W = WV 〉 ∼= Z2As in the 
ase m = 13, verti
es with the same letter in the fundamental domain areidenti�ed by the a
tion of Γ. Amongst the identi�
ations of the verti
es, we will usethe following. UW · a = a1, V −1 · a = a2, S2 · a = a2, U · u = u1 and UW · v = v1.There are seven orbits of edges, with stabilizers
Γ(b,a) = 〈AB|AB2 = 1〉 ∼= Z/2,

Γ(v,v1) = 〈S|S3 = 1〉 ∼= Z/3,

Γ(a3,u) = 〈MB|MB2 = 1〉 ∼= Z/2,

Γ(u,b) = 〈B|B2 = 1〉 ∼= Z/2,

Γ(u1,b) = 〈A|A2 = 1〉 ∼= Z/2;

(a, v) and (a, s) having the trivial stabilizer. There are three orbits of fa
es, withtrivial stabilizers. The above data gives the Γ-equivariant Euler 
hara
teristi
 of X:
χΓ(X) =

1

2
+

1

3
+

2

4
− 2− 4

2
− 1

3
+ 3 = 0,in a

ordan
e with remark 21.



INTEGRAL HOMOLOGY OF PSL2 OF IMAGINARY QUADRATIC INTEGERS 193.2.1. The bottom row of the E1-term.This row identi�es with the 
ellular 
hain 
omplex of the quotient 
omplex Γ\X.We obtain for the row q = 0 in the 
olumns p = 0, 1, 2:
Z5

d1
1,0←−−− Z7

d1
2,0←−−− Z3where 1 is the only elementary divisor of the di�erential matri
es, with multipli
ity four for d1

1,0,and multipli
ity two for d1
2,0. The homology of Γ\X is generated in degree 1 by theloop represented by the edge (v, v1), and in degree 2 by the quotient of the fa
e

(a2, s, a, v), whi
h is homeomorphi
 to a 2-sphere.3.2.2. The odd rows of the E1-term.We start by investigating the morphism
Z2 ⊕ Z/3⊕ (Z/2)5

d1
1,1←−−−−− Z/3⊕ (Z/2)4and the morphism

Z/3⊕ (Z/2)q+4
d1
1,q←−−−−− Z/3⊕ (Z/2)4for q > 3. On the 3-torsion, d1

1,q is zero. Figure 6: (d1
1,q)(2)

(b, a) (a3, u) (u, b) (u1, b)

a 1 −1 0 0
b −1 0 0 1... ... ... ... ...
b −1 0 1 0
u 0 1 −1 0... ... ... ... ...
u 0 1 0 −1,

On the 2-torsion, d1
1,q is given by the matrix (d1

1,q)(2) of �gure6, where we repla
e the q−1
2 dotted entries between the two

1's with 1's, and the q−1
2 dotted entries between the −1's with

−1's. The rest is �lled with zeroes. Thus (d1
1,1)(2) has rank 3and (d1

1,q)(2) has rank 4 for q > 3.3.2.3. The even rows of the E1-term.There is a zero map arriving at E1
0,2
∼= Z⊕ (Z/2)2.For q > 4, there is a zero map arriving at E1

0,q
∼= (Z/2)q .The rest of the E1-page are zeroes.3.2.4. The E2-term.In the rows with q > 2, the E2-page is 
on
entrated in the
olumns

p = 0 and p = 1:
q > 4 even (Z/2)q 0
q > 3 odd (Z/2)q ⊕ Z/3 Z/3
q = 2 Z ⊕ (Z/2)2 0Its lowest two rows are 
on
entrated in the 
olumns p = 0, 1, 2:

q = 1 Z2 ⊕ (Z/2)2 ⊕ Z/3 Z/2 ⊕ Z/3 0

q = 0 Z Z Z

d2

kkVVVVVVVVVVVVVVVVVVVVVVLet us 
ompute the only nontrivial d2-arrow. The generator of E2
2,0 
omes from the 2-
ell (a2, s, a, v).Using the identi�
ations listed in 3.2, we see that the lift 1 ⊗(a2,s,a,v) 1 of the generator of E2

2,0 is



20 RAHM AND FUCHSmapped as follows in the E0-page:
−(1, V −1) ⊗s 1 + (1, V −1) ⊗a 1

+(1, S2) ⊗v 1 − (1, S2) ⊗a 1

−(1, V −1) ⊗(a,s) 1

+(1, S2) ⊗(a,v) 1

1⊗δoo

dΘ⊗1

��
1 ⊗(a,s) 1 − V −1 ⊗(a,s) 1

+S2 ⊗(a,v) 1 − 1 ⊗(a,v) 1
1 ⊗(a2,s,a,v) 1

1⊗δooAs S = ABV , the part lying in Θ1⊗a Z is [V −1]⊗a 1− [S2]⊗a 1 = [S2AB]⊗a 1− [S2]⊗a 1; and goesto S−1S2AB − S−1S2 = AB, the generator of H1(Γa; Z). So, our image in E0
0,1 passes to

(V , 2S, AB) ∈ 〈V , W 〉 ⊕ 〈S | 3S = 0〉 ⊕ (Z/2)2 ∼= E2
0,1,whi
h is of in�nite order and has the following property: There is no element η ∈ E2

0,1 with
kη = (V , 2S,AB) for an integer k > 1. So,

E3
0,1
∼= Z⊕ (Z/2)2 ⊕ Z/3.Thus the E∞-page yields the following short exa
t sequen
es:






0 → (Z/2)q → Hq(Γ; Z) → Z/3 → 0 q > 4 even,

0 → Z/3 ⊕ (Z/2)q → Hq(Γ; Z) → 0 q > 3 odd,

0 → Z ⊕ (Z/2)2 → H2(Γ; Z) → Z/3 ⊕ Z/2 → 0,

0 → Z ⊕ Z/3 ⊕ (Z/2)2 → H1(Γ; Z) → Z → 0.To resolve the ambiguity at the group extension H2(Γ; Z), we 
ompute
dimF2 Hq(Γ; Z/2) =

8

>

<

>

:

4 q = 1,

5 q = 2,

2q − 1 q > 3

Hq(Γ; Z/3) ∼= (Z/3)2, q > 2, 8

>

<

>

:

1 → (Z/2)5 → H3(Γ; Z/4) → Z/2 → 1,

1 → (Z/2)4 ⊕ Z/4 → H2(Γ; Z/4) → Z/2 → 1;where the last two sequen
es are exa
t; and get the result
Hq(PSL2(O−5); Z) ∼=






Z2 ⊕ Z/3⊕ (Z/2)2 q = 1,

Z⊕ Z/4⊕ Z/3⊕ Z/2 q = 2,

Z/3⊕ (Z/2)q q > 3.Remark 24. For m = 5, the 
he
k introdu
ed in remark 13 takes the following form.The abelianization is Γab ∼= 〈A,B, S,U, V : 2A = 0, 2B = 0, 3S = 0〉. The fundamental group ofthe quotient spa
e is free, so only the paraboli
 elements U and V 
an de�ne nontrivial loops in thequotient spa
e. The element U generates a nontrivial loop, while V generates a trivial loop. It followsthat E∞
0,1
∼= Z⊕ (Z/2)2 ⊕ Z/3, generated by V ,A,B and S. This is 
onsistent with the 
omputationabove, involving the detailed analysis of the d2-di�erential.3.3. m = 10. Let ω :=

√
−10. We will use the following de�nitions:

A := ±
„

−1
1

«

, B := ±
„

−ω 3
3 ω

«

, C := ±
„

−1 − ω 4 − ω
2 1 + ω

«

, D := ±
„

ω − 1 −4
3 1 + ω

«

,

L := ±
„

ω 3
3 −ω

«

, R := ±
„

5 + ω 2ω − 3
ω − 3 −4 − ω

«

, S := ±
„

−1
1 1

«

, U := ±
„

1 ω
1

«

,

V := ±
„

1 − ω 5
2 1 + ω

«

, W := ±
„

11 5ω
2ω −9

«

, Y := ±
„

ω − 2 −5
3 2 + ω

«

.Verti
es with the same letter are identi�ed by the a
tion. The matrix U a
ts as a verti
al translation by
−ω on the fundamental domain, whi
h is shown in �gure 7. There are nine orbits of verti
es, labelled
a, b, r, u, v, w, x, y, s. We have the following identi�
ations: UWa = a1, Wa = a2, V a = a3;
S−1v = v1, U−1Dv = v2; Dw = w1, U−1Dw = w2; Db = b1, Cb = b2; Dr = r1;
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UWx = x1. On the verti
es of (a, s, a3, x) , we have the identi�
ations B · a = a3 and V · a = a3,where the matrix B �xes x and the matrix V �xes s. For (v1, b2, r, b, v, w), we have the identi�
ationsof verti
es Cb = b2, Cr = r, S2v = v1 and S2w = w; and we pay parti
ular attention to the matrix
CR = S2AB identifying the edge (b, v) ∼= (b2, v1).The stabilizers of the vertex orbit representatives are

Γa = Γb =
˙

R| R3 = 1
¸ ∼= Z/3,

Γw =
˙

S | S3 = 1
¸ ∼= Z/3,

Γy =
˙

A, L| A2 = L2 = (AL)2 = 1
¸ ∼= D2,

Γu =
˙

A, B | A2 = B2 = (AB)2 = 1
¸ ∼= D2,

Γr =
˙

C| C2 = 1
¸ ∼= Z/2,

Γv =
˙

AB| (AB)2 = 1
¸ ∼= Z/2,

Γx =
˙

B | B2 = 1
¸ ∼= Z/2,

Γs = 〈V, W | V W = WV 〉 ∼= Z2.There are �fteen orbits of edges, labelled (b, v), (r, w), (b, r), (v, w), (a2 , w2),
(y, r1), (x, a), (u, y), (a, b), (u, v), (a, s), (w, b1), (r, v2), (y, x1), (x, u).

x1

a2

a1

b1

v2w2

w1

r1

a3

b2

v1

s

u

x

y

a
b

r

v
w

Figure 7: Thefundamental do-main for m = 10

Amongst their stabilizers only
Γ(a2,w2) = Γa2 = W−1ΓaW =

˙

W−1RW
˛

˛ (W−1RW )3 = 1
¸ ∼= Z/3,

Γ(a,b) = Γa = Γb =
˙

R| R3 = 1
¸ ∼= Z/3,

Γ(w,b1) = Γb1 = Γw =
˙

S | S3 = 1
¸ ∼= Z/3,

Γ(y,r1) = Γr1 = DΓrD−1 =
˙

AL = DCD−1
˛

˛ (DCD−1)2 = 1
¸ ∼= Z/2,

Γ(u,v) = Γv =
˙

AB | (AB)2 = 1
¸ ∼= Z/2,

Γ(r,v2) = Γv2 = Γr =
˙

C| C2 = 1
¸ ∼= Z/2,

Γ(y,x1) = Γx1 = UWΓx(UW )−1 =
˙

L | L2 = 1
¸ ∼= Z/2,

Γ(x,u) = Γx =
˙

B | B2 = 1
¸ ∼= Z/2,

Γ(u,y) =
˙

A | A2 = 1
¸ ∼= Z/2are nontrivial. Furthermore, there are seven orbits of fa
es, with trivial stabilizers.With the above information on the isomorphism types of the 
ell stabilizers, we getthe Γ-equivariant Euler 
hara
teristi
 of X:

χΓ(X) =
3

3
+

2

4
+

3

2
− 3

3
− 6

2
− 6 + 7 = 0,in a

ordan
e with remark 21.3.3.1. The bottom row q = 0 of the E1-term. We obtain for the row q = 0 in the
olumns p = 0, 1, 2:

Z9
d1
1,0←−−− Z15

d1
2,0←−−− Z7,where 1 is the only elementary divisor of the di�erential matri
es, with multipli
ityeight for d1

1,0, and multipli
ity �ve for d1
2,0. The rest of this row is zero.3.3.2. The odd rows of the E1-term.For odd q, the morphism

⊕

σ∈Γ\X0

Hq(Γσ)
d1
1,q←−−−

⊕

σ∈Γ\X1

Hq(Γσ)is for q > 3 of the form
(Z/3)3 ⊕ (Z/2)q+6 ←− (Z/3)3 ⊕ (Z/2)6.For q = 1, we have to add H1(Γs) ∼= Z2 on the target side of the morphism d1

1,q, but the in
omingtorsion must rea
h it trivially. On the 3-primary part, d1
1,q is given by the matrix

(d1
1,q)(3) =

(a, b) (Db, w) (Wa, U−1Dw)

a −1 0 −1
w 0 1 1
b 1 −1 0.



22 RAHM AND FUCHSThis matrix has rank 2, so its image is isomorphi
 to (Z/3)2 and its kernel is Z/3.On the 2-primary part, d1
1,q is for odd q given by the matrix

(d1
1,q)(2) =

(y, r1) (u, v) (r, v2) (y, x1) (x, u) (u, y)

u 0 −1 0 0 0 −1... ... ... ... ... ... ...
u 0 −1 0 0 1 0
y −1 0 0 0 0 1... ... ... ... ... ... ...
y −1 0 0 −1 0 0
x 0 0 0 1 −1 0
r 1 0 −1 0 0 0
v 0 1 1 0 0 0,where we repla
e, as in the 
omputation for m = 13, the q−1

2 dotted entries between the two 1'swith 1's, and the q−1
2 dotted entries between the −1's with −1's. The rest is �lled with zeroes. Theresulting matrix (d1
1,q)(2) has rank 5 for q = 1, and full rank 6 for q > 3.3.3.3. The even rows of the E1-term.These rows are given by zero maps into ⊕

σ∈Γ\X0

Hq(Γσ) ∼= (Z/2)q for q > 2, respe
tively into
⊕

σ∈Γ\X0

H2(Γσ) ∼= Z⊕ (Z/2)2 for q = 2.3.3.4. The E2-term.In the rows with q > 2, the E2-page is 
on
entrated in the 
olumns p = 0 and p = 1:
q > 4 even (Z/2)q 0
q > 3 odd (Z/2)q ⊕ Z/3 Z/3
q = 2 Z ⊕ (Z/2)2 0Its lowest two rows are 
on
entrated in the 
olumns p = 0, 1, 2:

q = 1 Z2 ⊕ (Z/2)2 ⊕ Z/3 Z/2 ⊕ Z/3 0

q = 0 Z Z2 Z2

d2

kkVVVVVVVVVVVVVVVVVVVVVV3.3.5. The di�erential d2.The generators of the abelian group E2
2,0
∼= Z2 are represented by the 2-
ell (a, s, a3, x) and theunion of two 2-
ells (v1, b2, r, b, v, w), whose quotients by Γ are homeomorphi
 to 2-spheres. Using theidenti�
ations given in 3.3, wee that the only nontrivial d2-arrow is indu
ed by

δ((a, s, a3, x)) = (a, s) + V · (s, a) + B · (a, x) + (x, a)and
δ((v1, b2, r, b, v, w)) = (b, r)− C · (b, r) + CR · (b, v) + S2 · (v,w) − (v,w) − (b, v).The lift 1⊗(v1,b2,r,b,v,w) 1 of the generator obtained from (v1, b2, r, b, v, w) is mapped as follows:

(C, 1) ⊗r 1 − (C, 1) ⊗b 1
+(1, CR) ⊗v 1 − (1, CR) ⊗b 1
+(1, S2) ⊗w 1 − (1, S2) ⊗v 1

(C, 1) ⊗(b,r) 1

+(1, CR) ⊗(b,v) 1

+(1, S2) ⊗(v,w) 1

1⊗δoo

dΘ⊗1

��
1 ⊗(b,r) 1 − C ⊗(b,r) 1

+CR ⊗(b,v) 1 − 1 ⊗(b,v) 1

+S2 ⊗(v,w) 1 − 1 ⊗(v,w) 1

1 ⊗(v1,b2,r,b,v,w) 1
1⊗δoo
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2,0(〈(v1, b2, r, b, v, w)〉) ∼= Z/3.The lift 1⊗(a,s,a3,x) 1 of the generator obtained from (a, s, a3, x) is mapped
(V, 1) ⊗s 1 − (V, 1) ⊗a 1

+(1, B) ⊗x 1 − (1, B) ⊗a 1

(V, 1) ⊗(a,s) 1

+(1, B) ⊗(a,x) 1

1⊗δoo

dΘ⊗1

��
1 ⊗(a,s) 1 − V ⊗(a,s) 1

+B ⊗(a,x) 1 − 1 ⊗(a,x) 1
1 ⊗(a,s,a3,x) 1

1⊗δooWe attribute the symbols tσ to the part of this sum lying in Θ1 ⊗σ Z,
ts := (V, 1) ⊗s 1,
tx := (1, B) ⊗x 1,
ta := −(V, 1) ⊗a 1 − (1, B) ⊗a 1.We �nd the 
lass ts = −V ∈ 〈V ,W 〉 = Γabs ∼= H1(Γs; Z) ∼= Z2, whi
h is a generator of the free partof E1

0,1. It 
an not be the image of a torsion element from E1
1,1 = (Z/3)3 ⊕ (Z/2)2. Therefore, it ispreserved when passing from E1

0,1 to E2
0,1. The 
y
les tx and ta are torsion, so the fa
t that ts is agenerator of the free part determines that the image d2

2,0(〈(a, s, a3, x)〉) is of in�nite order and has thefollowing property: There is no element η ∈ E2
0,1
∼= Z2 ⊕ Z/3 ⊕ (Z/2)2 with kη = d2

2,0(〈(a, s, a3, x)〉)for an integer k > 1. Together with the isomorphism d2
2,0(〈(v1, b2, r, b, v, w)〉) ∼= Z/3, we obtain

E3
0,1
∼= Z⊕ (Z/2)2.Thus the E∞-page gives the following short exa
t sequen
es:






0 → (Z/2)q → Hq(Γ; Z) → Z/3 → 0, for q > 4 even,

0 → Z/3 ⊕ (Z/2)q → Hq(Γ; Z) → 0, for q > 3 odd,

0 → Z ⊕ (Z/2)2 → H2(Γ; Z) → Z ⊕ Z/3 ⊕ Z/2 → 0,

0 → Z ⊕ (Z/2)2 → H1(Γ; Z) → Z2 → 0.Therefore, there is ambiguity in the 3-torsion and the 2-torsion of the short exa
t sequen
e for
H2(Γ; Z). To identify the 
orre
t group extension, we 
ompute

dimF2 Hq(Γ; Z/2) ∼=






2q − 1, q > 3

6, q = 2,

5, q = 1.Furthermore, we �nd Hq(Γ; Z/3) ∼= (Z/3)2 for all q > 3 and the exa
t sequen
e
1→ (Z/2)5 → H3(Γ; Z/4)→ Z/2→ 1.From here, we easily see the results,

Hq(PSL2(O−10); Z) ∼=






Z3 ⊕ (Z/2)2, q = 1,

Z2 ⊕ Z/4⊕ Z/3⊕ Z/2, q = 2,

Z/3⊕ (Z/2)q, q > 3;Remark 25. For m = 10, the 
he
k introdu
ed in remark 13 takes the following form. The abelian-ization is the group Γab ∼= 〈A,B,D,U,W : 2A = 2B = 0〉. The elements of in�nite order are D, Uand W . The elements U and U−1D give the 
y
les generating H1(Γ\X), while W generates a trivialloop. So it follows that E∞
0,1 = Z ⊕ (Z/2)2, generated by W,A and B. This is 
onsistent with the
omputation above.



24 RAHM AND FUCHS3.4. m = 6. We obtain the fundamental domain for Γ = PSL2(Z[
√
−6 ]) displayed in �gure 8. Thematrix U := ± ( 1 ω

1 ) performs a verti
al translation by −ω of the fundamental domain. The followingmatri
es o

ur in the 
ell stabilizers.
A := ±

„

−1
1

«

, B := ±
„

−1 − ω 2 − ω
2 1 + ω

«

, R := ±
„

−ω 5 − ω
1 1 + ω

«

,

S := ±
„

−1
1 1

«

, V := ±
„

1 − ω 3
2 1 + ω

«

, W := ±
„

7 3ω
2ω −5

«

.There are �ve orbits of verti
es, labelled b, a, u, v, s, with stabilizers

b1 a1

a2

a3

s

b

a

u

v

v1Figure 8: Thefundamental do-main for m = 6

Γu =
˙

B, S| B2 = S3 = (BS)3 = 1
¸ ∼= A4,

Γv =
˙

B, R| B2 = R3 = (BR)3 = 1
¸ ∼= A4,

Γa =
˙

SB | (SB)3 = 1
¸ ∼= Z/3,

Γb =
˙

A| A2 = 1
¸ ∼= Z/2,

Γs = 〈V, W | V W = WV 〉 ∼= Z2,and identi�
ations UW · a = a1, W · a = a2, V · a = a3, A · a = a3, UW · b = b1and U · v = v1. There are seven orbits of edges, labelled (b, a), (a, s), (a, u), (u, v),
(a2, v), (b, b1) and (u, v1), amongst whose stabilizers only

Γ(a2,v) =
˙

RB | (RB)3 = 1
¸

= Γa2
∼= Z/3,

Γ(u,v1) =
˙

S | S3 = 1
¸ ∼= Z/3,

Γ(a,u) =
˙

SB | (SB)3 = 1
¸

= Γa
∼= Z/3,

Γ(u,v) =
˙

B | B2 = 1
¸ ∼= Z/2,

Γ(b,b1) =
˙

A | A2 = 1
¸

= Γb = Γb1
∼= Z/2are nontrivial; and three orbits of fa
es with trivial stabilizers. The above data givesthe Γ-equivariant Euler 
hara
teristi
 of X:

χΓ(X) =
2

12
+

1

3
+

1

2
− 2− 3

3
− 2

2
+ 3 = 0,in a

ordan
e with remark 21.3.4.1. The bottom row of the E1-term.We obtain in the 
olumns p = 0, 1, 2:

Z5
d1
1,0←−−− Z7

d1
2,0←−−− Z3where 1 is the only o

urring elementary divisor of the di�erential matri
es, withmultipli
ity four for d1

1,0, and multipli
ity two for d1
2,0. The homology of this sequen
e is generated bythe 
y
le (b, b1) in degree one and by the fa
e (a, s, a3, b) in degree two.3.4.2. The odd rows of the E1-term.The map d1

1,q is on the 2-primary part indu
ed by the in
lusion of Γ(u,v)
∼= Z/2 into Γv and Γu whi
hare isomorphi
 to A4. By [20, lemma 4.5(2)℄, every in
lusion of Z/2 into A4 indu
es inje
tions onhomology in degrees greater than 1, and is zero on H1. So the morphism

Z2 ⊕ Z/2⊕ (Z/3)3
d1
1,1←−−− (Z/2)2 ⊕ (Z/3)3has Z/2-rank 0 on the 2-primary part, and

Z/3⊕ Z/2⊕ (Hq(A4))
2

d1
1,q←−−− (Z/2)2 ⊕ (Z/3)3in the odd rows of degree q > 3 has Z/2-rank 1 on the 2-primary part.



INTEGRAL HOMOLOGY OF PSL2 OF IMAGINARY QUADRATIC INTEGERS 25On the 3-primary part, d1
1,q is for all odd q given by the following rank 2 matrix.

(d1
1,q)(3) =

(a, u) (a2, v) (u, v1)

a −1 −1 0
u 1 0 −1
v 0 1 1.In order to determine its rank, we make use of the following fa
ts.First, by [20, lemma 4.5℄, ea
h of the o

urring group in
lusions indu
es an inje
tion in homology.So we have to determine the relative positions of the images 
oming from the edges in ea
h dire
tsummand over the points. In order to �nd out if 
an
ellation o

urs between terms with positive andnegative signs, let us look at the following diagram. The symbol ∆W denotes the isomorphism givenby 
onjugation with W , δ denotes an inner automorphism, ι denotes any 
anoni
al in
lusion, and thearrows emanating from Z/3 are labeled with the image of the 
anoni
al generator.
Γ(a2,v)

id

uujjjjjjjjjjjjjjjjjjj
ι

**UUUUUUUUUUUUUUUUUUUUUU

Γa2

∆W
��

Z/3

RB

OO

RB
oo

RB
//

SB
uujjjjjjjjjjjjjjjjjjjjj

SUBU−1 **UUUUUUUUUUUUUUUUUUUUUUU

SB

zzuuuuuuuuuuuuuuuuuuuuuuu

S

��:
::

::
::

::
::

::
::

::

SB
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// Γu Γ(u,v1) ι
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ι

oo Γv1

δ

OO

Applying homology Hq for odd q and taking into a

ount that the fa
t that inner automorphismsa
t trivially on homology, we get a similar slightly smaller 
ommutative diagram. One 
an thenunambiguously identify all o

urring groups Hq(Z/3) ∼= Z/3 and its images in Hq(A4) with the�abstra
t� Hq(Z/3) ∼= Z/3 in the middle. This gives a basis for the 3-primary parts of the sour
eand a subspa
e of the image. In this basis, the 3-primary map is given by the above matrix (d1
1,q)(3),followed by an inje
tion whi
h does not in�uen
e the homology.3.4.3. The even rows of the E1-term.The even rows are the zero map to E1

0,2
∼= Z⊕ (Z/2)2, and to E1

0,q
∼= (Hq(A4))

2 for degree q > 4.3.4.4. The E2-term.In the rows with q > 2, the E2-page is 
on
entrated in the 
olumns p = 0 and p = 1:
q = 6k + 8 (Z/2)2k+4 0

q = 6k + 7 (Z/2)2k+2 ⊕ Z/3 Z/2 ⊕ Z/3
q = 6k + 6 (Z/2)2k+2 0
q = 6k + 5 (Z/2)2k+4 ⊕ Z/3 Z/2 ⊕ Z/3
q = 6k + 4 (Z/2)2k 0
q = 6k + 3 (Z/2)2k+2 ⊕ Z/3 Z/2 ⊕ Z/3
q = 2 Z ⊕ (Z/2)2 0Its lowest two rows are 
on
entrated in the 
olumns p = 0, 1, 2:

q = 1 Z2 ⊕ Z/2 ⊕ Z/3 (Z/2)2 ⊕ Z/3 0

q = 0 Z Z Z

kkVVVVVVVVVVVVVVVVVVVVVVV



26 RAHM AND FUCHS3.4.5. The E3 = E∞-term.For the 
al
ulation of the d2-di�erential, we have
δ(a, s, a3, b) = (a3, s) + (s, a) + (a, b) + (b, a3)

= (V · a, s) + (s, a) + (a, b) + (b, A · a)

= V · (a, s)− (a, s)− (b, a) + A · (b, a),

(1 ⊗ δ)(1⊗(a,s,a3,b) 1) = 1⊗V ·(a,s) 1− 1⊗(a,s) 1− 1⊗(b,a) 1 + 1⊗A·(b,a) 1

= (V − 1)⊗(a,s) 1 + (A− 1)⊗(b,a) 1

= (dΘ ⊗ 1)
(
(1, V )⊗(a,s) 1 + (1, A)⊗(b,a) 1

)

= (dΘ ⊗ 1)
(
[V ]⊗(a,s) 1 + [A]⊗(b,a) 1

)
.We then get

(1⊗ δ)
(
[V ]⊗(a,s) 1 + [A]⊗(b,a) 1

)
= [V ]⊗s 1− [V ]⊗a 1 + [A]⊗a 1− [A]⊗b 1.As [V ]⊗s 1 and [W ]⊗s 1 represent the generators of the torsion-free part of E2

0,1
∼= Z2 ⊕ Z/2⊕ Z/3,we see that the above 
omputed element of E0

0,1 represents an element ν ∈ E2
0,1 of in�nite orderwith the following property: there is no element η ∈ E2

0,1 with kη = ν for an integer k > 1. So,
E3

0,1
∼= Z⊕ Z/3⊕ Z/2 and E3

2,0 = 0.3.4.6. The short exa
t sequen
es.We thus obtain for integral homology the following short exa
t sequen
es:





0 → (Z/2)2k+4 → Hq(Γ; Z) → Z/3 ⊕ Z/2 → 0, q = 6k + 8

0 → (Z/2)2k+2 ⊕ Z/3 → Hq(Γ; Z) → 0, q = 6k + 7

0 → (Z/2)2k+2 → Hq(Γ; Z) → Z/3 ⊕ Z/2 → 0, q = 6k + 6,

0 → (Z/2)2k+4 ⊕ Z/3 → Hq(Γ; Z) → 0, q = 6k + 5,

0 → (Z/2)2k → Hq(Γ; Z) → Z/3 ⊕ Z/2 → 0, q = 6k + 4,

0 → (Z/2)2k+2 ⊕ Z/3 → Hq(Γ; Z) → 0, q = 6k + 3,

0 → Z ⊕ (Z/2)2 → H2(Γ; Z) → Z/3 ⊕ (Z/2)2 → 0,

0 → Z ⊕ Z/3 ⊕ Z/2 → H1(Γ; Z) → Z → 0.Thus, there is ambiguity similar to the 
ase m = 10 in the 3-torsion of the short exa
t sequen
e for
H2(Γ; Z) and in the 2-torsion for all even degrees. To resolve it, we 
ompute
dimF2 Hq(Γ; Z/2) ∼=

8

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:

3, q = 1,

5, q = 2,

4k + 5, q = 6k + 3,

4k + 3, q = 6k + 4,

4k + 5, q = 6k + 5,

4k + 7, q = 6k + 6,

4k + 5, q = 6k + 7

4k + 7, q = 6k + 8,

Hq(Γ; Z/3) ∼= (Z/3)2 for all q > 3,and the exa
t sequen
es





1→ (Z/2)4 → H3(Γ; Z/4)→ (Z/2)2 → 1,

1→ Z/4⊕ (Z/2)3 → H2(Γ; Z/4)→ (Z/2)2 → 1.



INTEGRAL HOMOLOGY OF PSL2 OF IMAGINARY QUADRATIC INTEGERS 27Summarizing, we have resolved the ambiguities and obtain:
Hq(PSL2(O−6); Z) ∼=






Z2 ⊕ Z/3⊕ Z/2, q = 1,

Z⊕ Z/4⊕ Z/3⊕ (Z/2)2, q = 2,

Z/3⊕ (Z/2)2k+2, q = 6k + 3,

Z/3⊕ (Z/2)2k+1, q = 6k + 4,

Z/3⊕ (Z/2)2k+4, q = 6k + 5,

Z/3⊕ (Z/2)2k+3, q = 6k + 6,

Z/3⊕ (Z/2)2k+2, q = 6k + 7,

Z/3⊕ (Z/2)2k+5, q = 6k + 8, q > 8.Remark 26. For m = 6, the 
he
k introdu
ed in remark 13 takes the following form. The abelian-ization is Γab ∼= 〈A,R,U,W : 2A = 0, 3R = 0〉. The paraboli
 element U gives the 
y
le generating
H1(Γ\X), while the paraboli
 element W generates a trivial loop in the quotient spa
e. So it followsthat E∞

0,1
∼= Z⊕Z/2⊕Z/3, generated by W,A and R. This is 
onsistent with the 
omputation above.3.5. m = 15. We have O

Q[
√
−15 ] = Z[ω] with ω := −1

2 + 1
2

√
−15. Writing Γ := PSL2(Z[ω]) and

A := ±
„

−1
1

«

, C := ±
„

4 −1 − 2ω
1 + 2ω 4

«

, T := ±
„

−3 + ω −3 − 2ω
−1 − 2ω 4

«

,

U := ±
„

1 1 + ω
1

«

, V := ±
„

−1 − 2ω 3 − ω
4 3 + 2ω

«

, W := ±
„

−1 − 2ω 4
4 + ω −1 + 2ω

«

, S := ±
„

−1
1 1

«

,

o′c′

b′

a′

o c

s
a

b

Figure 9: Thefundamental do-main for m = 15

we have the identi�
ations U−1A · (o, c) = (o′, c′), T · (a, b′) = (a′, b),
W · (s, b′) = (s, b), and V −1 · (s, a) = (s, a′) in the fundamental domain displayed in�gure 9. There is no identi�
ation between the edges (b, c) and (b′, c′), nor betweenthe edges (a, o) and (a′, o′). Thus the quotient by the Γ-a
tion is homeomorphi
 tothe sum of a Möbius band and a 2-sphere, with a disk amalgamated. There are �veorbits of verti
es, labelled o, a, b, c, s, with stabilizers

Γo = Γa =
˙

A | A2 = 1
¸ ∼= Z/2,

Γc = Γb =
˙

S | S3 = 1
¸ ∼= Z/3,

Γs = 〈V, W | V W = WV 〉 ∼= Z2.There are eight orbits of edges, labelled (o, a), (o′, a′),(a, s), (a, b′), (b, s), (b, c), (b′, c′)and (o, c), amongst whose stabilizers only
Γ(o,a) =

˙

A | A2 = 1
¸

= Γo = Γa
∼= Z/2,

Γ(o′,a′) =
˙

V −1AV
˛

˛ (V −1AV )2 = 1
¸

= Γo′ = Γa′
∼= Z/2,

Γ(b,c) =
˙

S | S3 = 1
¸

= Γb = Γc
∼= Z/3,

Γ(b′,c′) =
˙

U−1ASA−1U
˛

˛ (U−1ASA−1U)3 = 1
¸

= Γb′ = Γc′
∼= Z/3are nontrivial; and four orbits of fa
es with trivial stabilizers. The above data givesthe Γ-equivariant Euler 
hara
teristi
 of X, in a

ordan
e with remark 21:

χΓ(X) =
2

2
+

2

3
− 4− 2

2
− 2

3
+ 4 = 0.3.5.1. The bottom row of the E1-term.We obtain in the 
olumns p = 0, 1, 2:

Z5
d1
1,0←−−− Z8

d1
2,0←−−− Z4where 1 is the only o

urring elementary divisor of the di�erential matri
es, with multipli
ity fourfor d1

1,0, and multipli
ity three for d1
2,0. The homology of this sequen
e is generated by the 
y
le

(o, a) + (a, b′) + (b′, c′) + (c′, o′) in degree one and by the 
y
le (a, s, b′)− (a′, s, b) in degree two.



28 RAHM AND FUCHS3.5.2. The odd rows of the E1-term.The maps
(Z/2)2 ⊕ (Z/3)2

d1
1,q←−−− (Z/2)2 ⊕ (Z/3)2for q > 3, and

Z2 ⊕ (Z/2)2 ⊕ (Z/3)2
d1
1,1←−−− (Z/2)2 ⊕ (Z/3)2are on the 2-primary part indu
ed by the identity maps Γ(o,a) = Γo = Γa and Γ(o′,a′) = Γo′ = Γa′ . So,we obtain the following rank 1 matrix for the 2-primary part:

(d1
1,q)(2) =

(o, a) (o′, a′)

a −1 −1
o 1 1

.On the 3-primary part, they are indu
ed by the identity maps Γ(b,c) = Γb = Γc and Γ(b′,c′) = Γb′ = Γc′ .So, we obtain the following rank 1 matrix for the 3-primary part:
(d1

1,q)(3) =
(b, c) (b′, c′)

b −1 −1
c 1 1

.3.5.3. The even rows of the E1-term.The even rows are the zero map to E1
0,2
∼= Z, and to E1

0,q = 0 for q > 4.3.5.4. The E2-term.In the rows with q > 2, the E2-page is 
on
entrated in the 
olumns p = 0 and p = 1:
q > 4 even 0 0
q > 3 odd Z/2 ⊕ Z/3 Z/2 ⊕ Z/3
q = 2 Z 0Its lowest two rows are 
on
entrated in the 
olumns p = 0, 1, 2:

q = 1 Z2 ⊕ Z/2 ⊕ Z/3 Z/2 ⊕ Z/3 0

q = 0 Z Z Z

d2
2,0

jjVVVVVVVVVVVVVVVVVVVVV3.5.5. The E3 = E∞-term.For the 
al
ulation of the d2-di�erential, we have
δ

`

(a, s, b′) − (a′, s, b)
´

= (a, s) + (s, b′) + (b′, a) − (a′, s) − (s, b) − (b, a′)

= (a, s) + W−1 · (s, b) + (b′, a) − V −1 · (a, s) − (s, b) − T · (b′, a),

(1 ⊗ δ)(1 ⊗(a,s,b′)−(a′,s,b) 1) = −(V −1 − 1) ⊗(a,s) 1 + (W−1 − 1) ⊗(s,b) 1 − (T − 1) ⊗(b′,a) 1

= (dΘ ⊗ 1)
`

−(1, V −1) ⊗(a,s) 1 + (1, W−1) ⊗(s,b) 1 − (1, T ) ⊗(b′,a) 1
´

= (dΘ ⊗ 1)
`

−[V −1] ⊗(a,s) 1 + [W−1] ⊗(s,b) 1 − [T ] ⊗(b′,a) 1
´

.We then get
1⊗δ

`

−[V −1] ⊗(a,s) 1 + [W−1] ⊗(s,b) 1 − [T ] ⊗(b′,a) 1
´

= [V −1]⊗a1−[V −1]⊗s1+[W−1]⊗b1−[W−1]⊗s1+[T ]⊗b′ 1−[T ]⊗a1.As the generators of the torsion-free part of E2
0,1
∼= Z2 ⊕ Z/2⊕ Z/3 are represented by −[V −1]⊗s 1and −[W−1]⊗s 1, we see that the above 
omputed element of E0

0,1 represents an element ν ∈ E2
0,1 ofin�nite order with the following property: There is no element η ∈ E2

0,1 with kη = ν for an integer
k > 1. So, E3

0,1
∼= Z⊕ Z/3⊕ Z/2 and E3

2,0 = 0.
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t sequen
es.We thus obtain for integral homology the following short exa
t sequen
es:
{

0 → Z/2 ⊕ Z/3 → Hq(Γ; Z) → 0, q > 3,

0 → Z → H2(Γ; Z) → Z/2 ⊕ Z/3 → 0,

0 → Z ⊕ Z/2 ⊕ Z/3 → H1(Γ; Z) → Z → 0.Thus, there is ambiguity in the 2- and 3-torsion in H2(Γ; Z), similar to the 
ases m = 10 and m = 6.In order to resolve it, we only need to 
ompute the homology with Z/2- and Z/3-
oe�
ients,
Hq(Γ; Z/2) ∼=

{
(Z/2)3 , q ∈ {1, 2},
(Z/2)2 , q > 3.

Hq(Γ; Z/3) ∼=
{

(Z/3)3, q ∈ {1, 2},
(Z/3)2, q > 3.and then use the Universal Coe�
ient Theorem to 
ompare. This yields the result:

Hq(PSL2(O−15); Z) ∼=






Z2 ⊕ Z/3⊕ Z/2, q = 1,

Z⊕ Z/3⊕ Z/2, q = 2,

Z/3⊕ Z/2, q > 3.Remark 27. For m = 15, the 
he
k introdu
ed in remark 13 takes the following form. The abelian-ization is Γab ∼= 〈AS,C,U : 6AS = 0〉. The elements of in�nite order U and C−1 give the same 
y
le,whi
h generates H1(Γ\X). However, the element U−1C−1 has in�nite order as well, and generates atrivial loop in the quotient spa
e. So it follows that E∞
0,1
∼= Z⊕Z/2⊕Z/3, generated by U−1C−1 and

AS. This is 
onsistent with the 
omputation above.4. Appendix: The equivariant retra
tionIn this se
tion, we give Flöge's proof of the existen
e of a retra
tion ρ from Ĥ to the 
ell 
omplex
X•. We do not show the fa
t that ρ is Γ-equivariant, whi
h 
an be observed sin
e the �bers of ρ aregeodesi
 ar
s.Theorem 28 ([11, theorem 6.6℄). X is a retra
t of Ĥ, i. e. there is a 
ontinuous map ρ : Ĥ → Xsu
h that ρ(p) = p for all p ∈ X.The map ρ is �rst de�ned as the orthogonal proje
tion π from B̂ to ∂B̂, and is then 
ontinued tothe whole of Ĥ by Γ. Bian
hi [6℄ has shown that a nearly stri
t fundamental domain for the a
tion of
Γ on H 
an be 
hosen in the form of a Eu
lidean verti
al 
olumn D inside B. De�ne

D̂ := {(z, r) ∈ B̂ | 0 6 Re(z) 6 1, 0 6 Im(z) 6
√

m},and denote by S the set of singular points in D̂. Finally, D := D̂ − S.Remark 29 ([11℄, D is Γ-normal). For every p ∈ H, there exists a neighborhood U of p in H su
hthat there are at most �nitely many g ∈ Γ with gD ∩ U 6= ∅.We will use the following lemmas to prove theorem 28.Lemma 30 ([11, lemma 6.5℄). For any subset A ⊂ D whi
h is 
losed in H and any p ∈ H, thereexists an open neighborhood Up of p su
h that we have for all g ∈ Γ: gA ∩ Up 6= ∅ if and only if
p ∈ gA.



30 RAHM AND FUCHSProof. By remark 29, there is a neighborhood U of p in H for whi
h {g ∈ Γ | gD ∩ U 6= ∅ } is �nite.In parti
ular, its subset
Γo := {g ∈ Γ | gA ∩ U 6= ∅ and p /∈ gA }is �nite. Therefore, A being 
losed, ⋃

g∈Γo

gA is 
losed in H. Thus Up := U − (
⋃

g∈Γo

gA) is open in Hand satis�es to the requested 
ondition. �Lemma 31 ([11, lemma 6.3℄). There is an ε0 > 0 su
h that for all singular points s, s′ ∈ S, for all
ε 6 ε0 and g ∈ Γ we have the following statement: gÛε(s) ∩ Ûε(s

′) 6= ∅ implies gs = s′.For 
lass number two, as we obtain a fundamental domain for the a
tion of Γ on Ĥ (stri
terthan D̂) 
ontaining just one singular point, this lemma states only that Γ a
ts dis
ontinuously on Ĥ(with respe
t to its topology whi
h is �ner than the subset topology of R3); and we skip Flöge's proofwhi
h is useful for 
lass number three or greater.Lemma 32 ([11, lemma 6.4℄). There exists an ε1 > 0 with the following property:If ε 6 ε1 and (z, r) ∈ D̂ with r < ε, then there is an s′ ∈ S su
h that (z, r) ∈ Û2ε(s
′).

Figure 10: Flöge's sket
h
Flöge draws the sket
h of the situation in a verti
al half-plane,whi
h we reprodu
e in �gure 10 with his kind permission. He givesonly some hints on the proof, whi
h we want to make slightly moreexpli
it here.Sket
h of proof. We 
onsider the Eu
lidean geometry of the upper-half spa
e model for Ĥ and write 
oordinates in C×R>0 . Denoteby ε1 the �height of the lowest non-singular vertex�, more pre
iselythe minimum of the values r > 0 o

uring as the real 
oordinateof the non-singular verti
es (z, r) ∈ H of the fundamental domain

ρ(D̂) for Γ. Then {(z, r) ∈ D̂ | r < ε1} 
onsists of one 
onne
ted
omponent for ea
h singular point s′ ∈ S. We will denote by D̂s′the 
onne
ted 
omponent 
ontaining s′. Now �x s′ ∈ S. There are �nitely many hemispheres limiting
D̂ from below and tou
hing s′. We will 
onsider the situation in a verti
al half-plane 
ontaining
s′. The most 
riti
al verti
al half-planes for our assertion 
ontain the interse
tion ar
 of two su
hhemispheres, be
ause the other verti
al half-planes 
ontain 
ir
le segments of ∂D̂ of greater radius.The interse
tion of two non-identi
al Eu
lidean 2-spheres whi
h have more than one point in 
ommon,is a 
ir
le with 
enter on the line segment 
onne
ting the two 2-sphere 
enters. Thus the interse
tionof the two hemispheres mentioned above is a semi
ir
le with 
enter in the plane r = 0 . Denote by ζthe radius of this semi
ir
le. Then ε1 6 ζ, be
ause an edge of our fundamental domain, 
onne
ting
s′ with a non-singular vertex, lies on this semi
ir
le. Now it is easy to see that D̂s′ is a subset of thetrun
ated 
one obtained as the 
onvex envelope of s′ and the horizontal disk with radius ζ and 
enter
(s′, ζ). We 
on
lude that for all ε < ε1, ε > 0, the set {(z, r) ∈ D̂s′ | r < ε} is a subset of the horoball
Û2ε(s

′). So we have seen that ε1 has the property 
laimed in the lemma. �Proof of theorem 28. For any (z, r) ∈ D̂ there is a unique rz > 0 su
h that (z, rz) ∈ D̂ ∩ ∂B̂ =: Ĝ, infa
t rz = min {r′ : (z, r′) ∈ D̂}. We 
an thus de�ne the map π : D̂ → Ĝ by π(z, r) := (z, rz). Themap π is 
ontinuous with respe
t to the subset topology of R3, and by [11, 
orollary 5.10℄ also withrespe
t to the topology of Ĥ. Furthermore, we have π(p) = p for all p ∈ Ĝ. We now extend π to a map
ρ : Ĥ → X as follows. Be
ause of {(

1 b
1

)
: b ∈ R

}
· D̂ = Ĝ, we �nd for any p ∈ Ĥ a γ ∈ Γ su
h that

γ(p) ∈ D̂. We set ρ(p) := γ−1 ◦ π ◦ γ(p). In order to show that this makes sense, we have to show that
p ∈ γ−1D̂ ∩ ξ−1D̂ implies γ−1 ◦ π ◦ γ(p) = ξ−1 ◦ π ◦ ξ(p), where γ, ξ ∈ Γ. We have ξ(p) ∈ ξγ−1D̂ ∩ D̂,



INTEGRAL HOMOLOGY OF PSL2 OF IMAGINARY QUADRATIC INTEGERS 31then γξ−1(ξ(p)) = γ(p) ∈ D̂ ∩ γξ−1D̂, and either ξ(p), γ(p) are both from Ĝ, or both from D̂ ∩ B◦.In the �rst 
ase, it immediately follows that γ−1 ◦π ◦ γ(p) = ξ−1 ◦π ◦ ξ(p) = p, and ξ−1 ◦ ξ(p) = p. Inthe se
ond 
ase, we have by [11, lemma 3.4℄ that if γξ−1 =
(

a b
c d

), the entry c must vanish. So γξ−1is the produ
t (
a 0
0 d

) (
1 db
0 1.

). Both of the latter two matri
es 
ommute with π sin
e any su
h element
ζ satis�es ζ(∂B̂) = ∂B̂, and ζ maps verti
al half-lines to verti
al half-lines.So we have (γξ−1 ◦ π ◦ ξγ−1)p′ = πp′ for all p′ ∈ D̂ with ξγ−1p′ ∈ D̂, and then it follows that

ξ−1 ◦ π ◦ ξ(p) = γ ∈ γ(ξ−1 ◦ π ◦ ξ)γ−1γ(p) = γ−1 ◦ π ◦ γ(p) = γ−1 ◦ π ◦ γ(p).Thus, ρ is well-de�ned. Furthermore, π(p) = p for all p ∈ Ĝ implies ρ(p) = p for all p ∈ X. It remainsto show that ρ is 
ontinuous at any p ∈ Ĥ.1st 
ase. In the 
ase p ∈ H, by lemma 30, p has an open neighborhood Up su
h that: for any γ ∈ Γ, wehave γUp ∩D 6= ∅ ⇐⇒ γ(p) ∈ D. Furthermore, the set {γ ∈ Γ : γ(p) ∈ D} is �nite [11, remark 3.6℄,say γ1, . . . , γn. Let now V be an open neighborhood of ρ(p). Be
ause of the 
ontinuity of all γi, γ
−1
iand the 
ontinuity of π : D̂ → Ĝ, there exist neighborhoods Ui of p su
h that γ−1

i ◦ π ◦ γi(Ui) ⊂ V .Note that for all γi we have γ−1
i ◦ π ◦ γi(p) = ρ(p). Setting U := Up ∩ (

⋂n
i=1 Ui), we have ρ(U) ⊂ V ,i. e. ρ is 
ontinuous at the point p.2nd 
ase. In the 
ase p ∈ Ĥ ∩ C, let ǫ0, ǫ1 and ǫs for s ∈ S be positive real numbers as in lemma 31,lemma 32 and [11, lemma 5.9℄; and let ǫ > 0 be less than the minimum of ǫ0
2 , ǫ1, ǫs for s ∈ S. Be
auseof {(

1 b
1

)
: b ∈ R

}
· D̂ = Ĝ, there exist s ∈ S, ξ =

(
a b
c d

) su
h that ξs = p and by [11, remark 5.5(a)℄,we have ξÛǫ(s) = Û ǫ

|cs−d|2
(p). Let us now show that ρ(Û ǫ

|cs−d|2
(p)) ⊂ Û2ǫ(p). Let p′ ∈ Û ǫ

|cs−d|2
(p), andlet γ ∈ Γ with γp′ ∈ D̂. Then ρ(p′) = γ−1 ◦ π ◦ γ(p′). By [11, remark 5.5(b)℄, applied to s and γξ itfollows that γp′ = γξ(ξ−1p′) ∈ Ûǫ(γξs) = Ûǫ(γp), and by [11, remark 5.6℄ all 
onditions of lemma 32are satis�ed. So there is an s′ ∈ S su
h that γp′ ∈ Û2ǫ(s

′). This means that γξ(Û2ǫ(s)) ∩ Û2ǫ(s
′) 6= ∅,and by lemma 31 it follows that s′ = γξs = γp. Let us now 
onsider γp′ again.Sin
e γp′ ∈ Ûǫ(γp)) = Ûǫ(s

′) = Uǫ(s
′) and π(Uǫ(s

′)) ⊂ Uǫ(s
′); and by [11, lemma 5.9℄ we have

Uǫ(s
′) ∩ B̂ ⊂ Û2ǫ(s

′). So π ◦ γp′ ∈ Û2ǫ(s
′). By [11, remark 5.5(b)℄ it �nally follows that

ρ(p′) = γ−1 ◦ π ◦ γp′ ∈ γ−1Û2ǫ(s
′) ⊂ Û2ǫ(γ

−1s′) = Û2ǫ(p),and we are done. �Referen
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