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1 Introduction
Time-course microarray data have often been analyzed by treating the gene expres-
sion profiles as multivariate observations. However treating the data as multivariate
does have some limitations. Gene expression data tend to exhibit problems such as
high dimensionality, missing values, large amounts of measurement error, correla-
tion between observations over time, etc. Many of the multivariate techniques (e.g.
principal components analysis, ANOVA, linear mixed models, etc.) used to analyze
such data have difficulties handling missing values, may require uniform sampling
for all genes, fail to account for the correlation between measurements made on the
same gene and/or do not facilitate the removal of noise from the measured data thus
ignoring any smoothness that may be evident in the expression profiles. Functional
data analysis (FDA) as outlined in Ramsay and Silverman (2005) is a statistical
technique that treats the entire sequence of measurements for an individual expres-
sion profile as a single functional entity rather than a set of discrete values. The term
functional refers to the belief that the gene expression data are being generated by
some underlying smooth function and the discrete measurements collected are a
snapshot of that function at various points in time (Ramsay and Silverman, 2005).
Functional data analysis circumvents many of the difficulties associated with the
treating time-course microarray data as multivariate and has proven to be extremely
useful in the analysis of such data.

The first step in FDA is creating an estimate of the gene expression curves
from the original (and possibly noisy) raw data. This step is called smoothing and
involves representing the expression curves as a linear combination of a finite num-
ber of basis functions (e.g. spline, Fourier, wavelets, etc.). Representing the expres-
sion profiles using basis functions allows for the inclusion of non-uniformly sam-
pled data, enables the experimenter to estimate expression values at times different
from those used in the original experiment, allows for the imputation of missing
values and facilitates the removal of noise from the measured data. Once the data
have been smoothed, many multivariate techniques which have been extended to
the functional case, e.g. principal components analysis, discriminant analysis and
regression analysis, can be applied. These have been used to satisfy some of the
main aims in modeling gene expression data, i.e. dimension reduction and clus-
tering to determine groups of co-expressed genes, tests for differential expression
between genes across treatment groups, discrimination and classification of genes,
etc. and have been shown to have advantages over multivariate approaches. Sec-
tions 2, 3 and 4 of his paper give an outline of some FDA techniques used in the
analysis of time-course gene expression data. It should be noted that many technical
details regarding methods of computation etc. have been omitted since this paper
constitutes a review of FDA procedures in microarray analyses. Interested readers



are referred to Ramsay and Silverman (2002), Ramsay and Silverman (2005) and
Ramsay, Hooker, and Graves (2009) for additional information and details regard-
ing computation and performing FDA in the R and MATLAB software suites using
the fda package. Section 5 demonstrates how FDA has been used in time-course
microarray analyses to date and describes how FDA can provide additional infor-
mation about the behavior of gene expression through time. To date the largest
proportion of research papers using FDA techniques have focussed on clustering
expression profiles as discussed in Section 5.1. Less work has been carried out in
the other main areas of interest though there has been an increase in the use of FDA
techniques in other microarray analyses such as tests for differential expression,
discriminating between groups of genes and modeling the relationships between
expression profiles. These are discussed in more detail in Sections 5.2 and 5.3.
Section 6 suggests some possible areas for future research using FDA methods that
have not yet been applied to time-course microarray data. Section 7 provides some
illustrative examples and gives the results of applying a number of FDA techniques
to real time-course gene expression data.

2 Smoothing
Gene expression over time can be thought of as arising from a smooth underly-
ing process or function g(t). However as stated in Section 1, gene expression data
are typically measured at a discrete number of time points and often contain large
amounts of measurement error, have missing values or measurements taken at dif-
ferent points in time for each gene, etc. Therefore we can write the discrete ex-
pression values yi j for the ith gene i = 1, . . . ,N measured at the jth time point
j = 1, . . . , ni using the model

yi j = gi(ti j) + εi j, (1)

where ni denotes the number of measurements for the ith gene, gi(t) is the smooth
expression curve for the ith gene and εi j is measurement error or noise which can be
correlated or uncorrelated. As stated in Ramsay and Silverman (2005), assuming
that the error terms are uncorrelated can be unrealistic in a FDA setting since the
variance of the errors is likely to change over time or neighboring εi j’s may be
correlated. However, the authors indicate that explicitly modeling variable variance
or autocorrelation structure in the errors may not always be necessary if the resulting
function estimates are indistinguishable from those obtained from assuming the
errors are independent. In any case, it is always pertinent to keep in mind that
incorporating more complex error structures may be beneficial and result in better
estimates.



A key step in FDA is to determine an estimate of the smooth expression
curve gi(t) which is achieved via smoothing methods. Smoothing methods represent
the discrete expression values as a linear combination of K known functions called
basis functions {φ1(t), . . . , φK(t)} such that

gi(t) =

K∑
k=1

cikφk(t) = Φci (2)

is a smooth expression curve. The basis functions to be used in (2) are chosen to re-
flect the characteristic behavior of the data, e.g. Fourier basis functions are suitable
for periodic data, B-spline basis functions are suitable for non-periodic data, etc. In
addition, it is necessary to estimate the vector of basis function coefficients ci. One
way to estimate ci is via least squares

‖yi − Φci‖
2, (3)

where Φ is an ni × K matrix of basis functions evaluated at ti j. In this instance the
number of basis functions K affects the smoothness of the results. The choice of an
optimal value for K is a complex problem and it is difficult to control the amount of
smoothing applied to the data. As a result, Ramsay and Silverman (2005) advocate
the use of smoothing splines where K = ni and over-fitting is controlled by adding a
penalty term to the optimization problem. This penalty term penalizes the curvature
of the resulting expression curves

‖yi − Φci‖
2 + λ

∫
T

D2gi(t)dt, (4)

where D2 denotes the 2nd derivative (curvature) of gi(t) and T denotes the entire
time interval. The trade-off between fit to the data and smoothness is controlled
by the smoothing parameter λ and a value for λ can be chosen via cross-validation
or generalized cross-validation. As stated in Section 1, representing the expression
profiles using basis functions has several advantages: facilitating the removal of
measurement error, allowing the inclusion of non-uniformly sampled data, enabling
the estimation of expression values at times different from those used in the orig-
inal experiment and allowing for the imputation of missing values. Another key
advantage of representing the raw gene expression data as gene expression func-
tions is the availability of derivative information. This is particularly useful for the
analysis of time-course microarray data since gene expression is part of a biolog-
ical system and much information about the behavior of a system is contained in
the derivatives. As a result, in some instances smooth estimates of the derivative(s)
of the expression curves may be required rather than estimates of the original ex-
pression profiles. When the interest is in the estimation of the derivatives, Ramsay



and Silverman (2005) suggest altering the penalty term on the RHS of (4) to en-
sure smoothness of the derivative. For example if velocity curves are required, the
curvature of the velocity curves should be penalized. This equates to changing the
penalty term to

λ

∫
T

D3gi(t)dt. (5)

In general if a derivative of order m is the highest required, derivatives of order m+2
should be penalized. Once the smooth expression curves (or derivatives) have been
estimated, further analysis can be carried out.

3 Functional Principal Components Analysis
Functional principal components analysis (FPCA) is the functional analogue of
multivariate principal components analysis. FPCA is a very common method used
to summarize functional data and is used to identify the characteristic features of a
set of functions. It also provides a way of looking at the variance structure, which
can often be more informative than a direct examination of the variance-covariance
function. Intuitively FPCA determines the main modes of variation in a set of
curves. The rth functional principal component (FPC) is the weight function ξr(t)
chosen to maximize the variance of the functional principal components scores

fir =

∫
T

ξr(t)[yi(t) − ȳ(t)]dt, (6)

subject to the constraints

‖ξr(t)‖2 = 1 and
∫
T

ξr(t)ξm(t)dt = 0, r < m. (7)

This leads to the eigenequation∫
T

ν(s, t)ξ(s)ds = ρξ(t), (8)

where

ν(s, t) = N−1
N∑

i=1

[yi(s) − ȳ(s)][yi(t) − ȳ(t)] (9)

is the covariance function, ȳ(t) is the cross-sectional mean and ρ is an appropriate
eigenvalue. Each functional principal component ξr(t) is a function describing a
particular pattern of behavior over the entire time interval. A high positive/negative



score on a particular FPC indicates that that gene is exhibiting the behavioral pat-
tern represented by that component. FPCA has been used extensively when ana-
lyzing time-course microarray data. It has been applied when clustering expression
profiles as discussed in Section 5.1. In addition, since the FPCs form a set of or-
thonormal basis functions, some authors have used the FPCs to approximate the
data (and/or covariate functions) such that

ŷi(t) = ȳ(t) +

R∑
r=1

firξr(t), (10)

e.g. when using the functional principal components approach to estimate the re-
gression functions as shown in Sections 4 and 5.3.

4 Functional Regression Analysis
Functional linear models attempt to express one dependent variable as a linear com-
bination of other features or measurements. A model can be functional in one of
two instances; the dependent variable is a function or one or more independent
variables are functions. Coefficient vectors β (as given in standard multivariate re-
gression problems) become coefficient functions β(t) and a key theme in functional
regression analysis is estimating β(t) to ensure the results are interpretable. For ex-
ample, say we have a scalar response variable yi and a predictor function xi(t) then
we can write

yi = α +

∫
T

xi(t)β(t)dt + εi, (11)

where α is the intercept term and β(t) is the regression coefficient function. When
yi is binary, this reduces to a functional logistic regression model. Other functional
regression models include the varying coefficient model

yi(t) = α(t) +

M∑
m=1

βm(t)xim + εi(t), (12)

where the response is now a function and the predictor is a continuous variable
whose relationship with yi(t) changes over time; the concurrent functional model

yi(t) = α(t) + xi(t)β(t)dt + εi(t), (13)

where both the response and predictor are functions but the value of yi(t) depends
only on the current value of xi(t) and the non-concurrent model

yi(t) = α(t) +

∫
T

xi(s)β(s, t)ds + εi(t), (14)



where the value of yi(t) is influenced by xi(t) over all t. In each case there is an issue
with under-determination, i.e. there are a finite number of observations to determine
the infinite-dimensional β(t). This results in an infinite number of possible solutions
for β(t). There are three main ways to overcome this problem. We present the
implementation details for the simplest case when the predictor(s) are functions
and the response is a scalar. These results can be generalized to the case when both
the predictor(s) and the response are functions (see Ramsay and Silverman, 2005,
Ramsay et al., 2009 for implementation details).

The first method assumes that both the predictor xi(t) and the regression
function β(t) can be represented using a finite number of Kz and Kβ basis functions
respectively, such that

xi(t) =

Kz∑
k=1

cikψk(t)

β(t) =

Kβ∑
k=1

bkφk(t) (15)

(we call this the basis function approach). However if Kβ is too large the total
number of basis functions may still exceed the number of observations available,
while if Kβ is too small the resulting estimate of β(t) may miss important features in
the data. As a result a second method can be employed (termed here the roughness
penalty approach), which involves estimating β(t) using a roughness penalty by
minimizing the penalized sum of squares

PENSSE(α, β) =

N∑
i=1

[yi − α −

∫
T

xi(t)β(t)dt]2 + λPEN[β(t)], (16)

where PEN[β(t)] is a penalty suitable for the problem under consideration (e.g. pe-
nalizing the second derivative as in (4)). This approach allows for more direct con-
trol over smoothing which reduces the chance that important features are missed
by using too few basis functions. The third method regresses y on the first R prin-
cipal component scores for the functional covariate. This involves expressing the
functional covariates as

xi(t) = x̄(t) +

R∑
r=1

firξr(t), (17)

where x̄(t) denotes the mean curve and

fir =

∫
T

ξr(t)(xi(t) − x̄(t))dt (18)



denotes the score on the rth component ξr(t). yi can then be represented by the
model

yi = α +

R∑
r=1

firβr + εi (19)

and the coefficient function β(t) can be re-constructed as β(t) =
R∑

r=1
βrξr(t).

Müller and Yao (2008) have extended this approach to functional additive
models, where the linear relationship between yi and the FPC scores shown in (19)
is replaced by an additive relationship as given by

yi = α +

R∑
r=1

gr( fir) + εi, (20)

where gr(·) is an arbitrary functional relationship. The functions gr(·) are estimated
using a local linear regression to the data ( fir, yi)i=1,...,n such that

n∑
i=1

K1

(
fir − x

hr

)
[yi − β0 − β1(x − fir)]2 (21)

is minimized with respect to β0 and β1, hr is the bandwidth and K1(·) is a kernel
function. This results in more flexible models and allows for the direct examination
of the role of each eigenfunction in predicting the response.

Using functional linear models overcomes problems associated with multi-
variate regression analysis. These include having observations measured at different
time points, the high correlation between observations on the same gene, difficulties
encountered due to the high dimensionality of both the response and covariate(s)
functions (where the number of observations for each gene may exceed the sample
size), the need to use multiple testing procedures and incorporating the smoothness
of the underlying expression profiles. Using the FDA approach to analyze data also
has the advantage of providing derivative information which greatly extends the
power of FDA over multivariate methods. Functional linear models can be used
to provide direct examination of relationships between derivatives that could oth-
erwise only be studied indirectly. The use of functional linear models in the study
of relationships between derivatives is discussed in Section 6.2. As stated in that
section, to date derivative information has not been used extensively when analyz-
ing expression profiles. However, we believe that since gene expression is part of a
biological system modeling such relationships may prove insightful for these types
of data.



5 Applications to Gene Expression Data

5.1 Clustering

There are many clustering algorithms available to cluster gene expression data, e.g.
k-means, hierarchical clustering, self organizing maps, fuzzy clustering, Bayesian
clustering, multivariate Gaussian mixture models, etc. However these multivariate
methods have their limitations. Some do not account for between time-point cor-
relation or assume the correlation has some specified structure (e.g. autoregressive)
that may not be appropriate for microarray data. Others require uniform sampling
points for all genes or fail to produce clusters when the number of time points are
large (see Wang, Neill, and Miller, 2008 for full discussion). Using FDA techniques
has circumvented many of these limitations and much of the work to date using
FDA to analyze time-course gene expression data has focussed on cluster analysis.
Some early examples include papers by Bar-Joseph, Gerber, Gifford, Jaakkola, and
Simon (2002) and Luan and Li (2003) who simultaneously develop a model which
represents the mean curve in each cluster, µc(t), using a linear combination of K
cubic spline or B-spline basis functions respectively (as in (3)) and cluster using
the EM algorithm. As stated in Section 2, it is difficult to choose the optimal value
for K and choosing different values can alter the results. To overcome this problem
Ma, Castillo-Davis, Zhong, and Liu (2006) model µc(t) using smoothing splines,
incorporating a penalty to the optimization criterion as shown in (4) and cluster the
expression profiles using the rejection-controlled EM (RCEM) algorithm. Ma and
Zhong (2008) extend this to incorporate additional covariate effects into the clus-
tering algorithm. Wang et al. (2008) propose an agglomerative clustering algorithm
for functional data based on a new similarity measure and compare the results with
many other clustering approaches such as k-means, self-organizing maps, smooth-
ing spline-based clustering using ssclust (see Ma et al., 2006), Gaussian finite
mixture model-based clustering using mclust (see Fraley and Raftery, 2002, Fra-
ley and Raftery, 2006), etc. available in the R statistical programming environment.

Other authors have used functional principal components analysis to cluster
time-course expression data. For example Song, Lee, Morris, and Kangd (2007)
smooth the data, calculate the FPCs as outlined in Ramsay and Silverman (2005),
Chapter 8 and cluster the vector of FPC scores using Gaussian finite mixture models
and the mclust algorithm. An alternative approach is to cluster expression profiles
based on the derivative of the curves. As stated in Section 4, use of the derivative
has received little attention in bioinformatics literature to date. The derivative con-
tains information about the shape (change pattern) of the expression profiles and
since gene expression can be considered part of a biological system, it could be
argued that using the derivative is sensible from a biological perspective. One way



of clustering based on the derivative involves smoothing the raw expression data,
calculating the first derivative of the expression profiles, determining the FPCs of
the derivative and clustering the resulting scores using an appropriate clustering
algorithm. Déjean, Martin, Baccini, and Besse (2007) calculate the multivariate
principal components of the matrix resulting from discretizing the first derivative
of the smoothed expression profiles. The principal component scores are then clus-
tered using a combination of k-means and hierarchical clustering algorithms. An
alternative procedure is suggested by Kim and Kim (2008). These authors cluster
change patterns of expression profiles by smoothing the data using a Fourier expan-
sion and calculating the derivatives of the resulting curves using the Fourier coeffi-
cients. The Fourier coefficients of the derivative are then clustered using k-means
and model-based clustering and the results compared. The authors report that us-
ing this method identifies clusters of co-expressed genes not identified by k-means
clustering. It could be expected that the derivative may contain different informa-
tion than the functions and therefore may result in different clustering outcomes.
We carried out an initial investigation (results shown in Section 7.1) to examine any
differences between clustering results obtained using the FPC scores of the func-
tions versus clustering results obtained using the FPC scores of the derivatives. This
analysis involved a subset of data from a well-known experiment examining gene
expression during the lifecycle of Drosophila melanogaster (Arbeitman, Furlong,
Imam, Johnson, Null, Baker, Krasnow, Scott, Davis, and White, 2002). The data
consisted of expression levels of 399 cell-cycle regulated genes at 27 time points
during the embryonic development phase. These data had no missing values. To
form the function estimates the data were smoothed using (4) while derivative es-
timates were determined using (4) with the modified penalty as shown in (5). The
smoothing parameter λ was chosen via generalized cross-validation. The FPCs of
the functions and the FPCs of the derivatives were then determined and the corre-
sponding FPC scores were clustered using mclust. The number of FPCs to retain
was determined by examining a scree plot of the eigenvalues, the proportion of vari-
ation accounted for by the first R FPCs and plots of the FPCs. Based on the latter
criteria, the first 3 FPCs of the functions were retained while the first 4 FPCs of the
derivatives were retained. The clustering results using both approaches are shown
in Section 7.1. Preliminary results indicate that clustering using the derivative ap-
pears to identify behavior patterns that are not recovered when using the functions.
We are currently examining whether these differences are biologically significant
and are carrying out further investigations into these results. We believe that use
of the derivative may provide additional insight into gene expression dynamics and
thus strengthen the argument for using FDA.

One problem encountered when clustering expression profiles is that pro-
cesses can evolve at different rates and this can affect the clustering results. There-



fore it may be necessary to incorporate some time-warping or allow for gene-
specific time-shifts when carrying out the clustering procedure. Removing time
variation is called registration in FDA and time-synchronization has been incorpo-
rated into the analysis of gene expression data by several authors. Liu and Müller
(2003) use an iterative mean-updating technique to synchronize time-scales across
genes and thus identify clusters of co-expressed genes. Chudova, Hart, Mjolsness,
and Smyth (2004) use a functional mixture model to model the mean expression
profile using a specified (parametric) differential equation and allow for possible
shifts in expression profiles through time. Clustering is performed using the EM al-
gorithm. However the authors indicate that the method is likely to fail if the true dy-
namics does not match the restricted class of functions proposed by the differential
equation specified. Luan and Li (2004) use the shape-invariant model to model the
guide gene profiles (i.e. genes whose pattern of behavior is known) using B-splines.
The authors aim to identify other genes following similar patterns as the guide genes
and allow for phase and amplitude shifts to model the individual profiles. Leng and
Müller (2006b) determine a time-shift characteristic for each gene which facili-
tates ordering the genes and thus determine groups of co-expressed genes accord-
ing to time of expression. Smith, Vollrath, Bradfield, and Craven (2009) present a
two-step procedure to determine clusters of genes with similar alignment and each
cluster is aligned independently of other clusters. The method alternates between
assigning genes to clusters and re-computing the alignment for each cluster based
on the genes assigned to it. Research has shown (see Gaffney and Smyth, 2004) that
performing alignment and clustering as a two-stage procedure can be sub-optimal
and thus simultaneous curve alignment and clustering has been examined in Liu
and Yang (2009a) and Tang and Müller (2009). The former combine clustering and
alignment using a simple time translation model and mixture modeling for cluster-
ing and fit the model in a linear mixed effects model framework. The latter allow for
more general time-shifts using time-warping functions and combine this with clus-
tering to identify groups of genes with similar shape patterns where genes within a
cluster can exhibit time variation. Tang and Müller (2009) use the PACE statistical
package (Yao, Müller, Clifford, Dueker, Follett, Lin, Buchholz, and Vogel, 2003),
freely available online at http://www.stat.ucdavis.edu/ wyang/PACE/index.html.

5.2 Differential Expression

Methods to determine differentially expressed genes have included empirical Bayes,
two-way mixed effects ANOVA and hidden Markov models. Each of these tech-
niques is a multivariate technique and thus have drawbacks when analyzing high-
dimensional time-course data. For example it may be required that measurements



are made at the same time-points, tests are applied on a gene by gene basis and
thus ignore data from all other genes or tests are applied at individual time points
and not over the entire time interval. FDA provides a means to examine whether
genes are differentially expressed over time (not a a single time point), facilitates
non-uniform sampling, etc. Storey, Xiao, Leek, Tompkins, and Davis (2005) test
for differential expression of genes over time and differential expression of genes
across treatment groups. Determining if a particular gene is differentially expressed
over time is achieved by modeling the mean expression profile using cubic splines
and testing whether the mean expression profile is flat or not. To determine if genes
are differentially expressed across treatment conditions, the mean expression pro-
files for each gene in each treatment condition are modeled using cubic splines and
an F test is performed to test for differences between the mean profiles. The pro-
posed methodology is implemented in the EDGE software package. Hong and Li
(2006) use a functional hierarchical model and theory from empirical Bayes anal-
ysis techniques to determine differentially expressed genes. Expression profiles
are modeled using B-spline basis functions and data from all genes is combined
to determine posterior probabilities of differential expression for each gene. Liu
and Yang (2009b) use FPCA to determine an estimate of each replicate’s trajectory
under the null (no differential expression) and alternative hypotheses (differential
expression) respectively. The estimates are determined using the PACE package.
Tests for differential expression are based on a modified F-statistic and a permu-
tation test is performed to determine an appropriate p-value. Ma, Zhong, and Liu
(2009) use functional ANOVA mixed-effects models to identify genes that are dif-
ferentially expressed across several treatment conditions, either with or without a
time by condition interaction. The presence of a significant time by condition in-
teraction for a particular gene indicates that the gene is a non-parallel differentially
expressed gene and the authors propose a generalized F test to determine if such
an interaction exists. If a significant interaction does not exist, the authors then test
if the genes are parallel differentially expressed using a modification of the pro-
posed F test. In each case using the FDA approach has been shown to be more
powerful than multivariate methods including two-way mixed effects ANOVA, em-
pirical Bayes, etc. and thus has clear advantages when analyzing time-course gene
expression data.

5.3 Functional Linear Models

Functional logistic regression models have been used to perform discriminant anal-
ysis of two groups of time-course microarray data. This involves solving (11),
where yi = 1 if the group is group 1 and yi = 0 if the group is group 2. Araki,



Konishi, and Imoto (2004) use radial basis functions and the roughness penalty ap-
proach to determine β(t), while Leng and Müller (2006a) and Müller (2005) use
the principal components approach outlined in Section 4 as implemented in the
PACE package. Leng and Müller (2006a) report that using the principal components
method results in lower overall classification error rates, while Müller (2005) uses
shrinkage estimators of the principal components scores, useful when the data col-
lected for some expression profiles is sparse. Parker and Wen (2009) use FPCA
as an exploratory data analysis tool to examine differences in behavior patterns be-
tween direct target and indirect target genes. The first derivative of the smooth
expression profiles is then determined and used as the predictor variable with a
Boolean (i.e. 0/1) response variable for classification. Other examples of using
functional regression analysis techniques to examine time-course microarray data
can be found in Wang, Chen, and Li (2007) who use model (12) and the basis
function approach to determine the transcriptional factors involved in gene regula-
tion during a biological process and model their effect on gene expression levels
during that process and Müller, Chiou, and Leng (2008) who use model (14) and
the principal components approach (and the PACE package) to model the relation-
ship between temporal gene expression profiles of different developmental stages
of Drosophila melanogaster. Müller and Yao (2008) use (20) to examine the rela-
tionship between expression profiles from two developmental stages of Drosophila
melanogaster. Again, FDA methodologies were found to be extremely useful and
Parker and Wen (2009) state that FDA can provide very good discrimination, sub-
stantially better than a standard multivariate analysis, while Müller et al. (2008) re-
port that functional regression emerges as a useful tool for relating gene expression
patterns from different developmental stages, and avoids the problems with large
numbers of parameters and multiple testing that affect alternative approaches. An
application of functional regression analysis to time-course microarray data can be
found in Section 7.2.

6 Further Research
The previous sections have outlined the use of several FDA techniques in time-
course microarray analyses and have shown the merits of FDA in these contexts.
As can be seen above, these applications have primarily focussed on FPCA and
functional linear regression. Other FDA procedures may also be of interest in bioin-
formatics and some of these methods are described in the following section. To our
knowledge none of the concepts outlined here have been applied to time-course
microarray data to date and are thus interesting areas for future research.



6.1 Functional t-Tests and F-Tests

When modeling functional data we may be interested in questions such as: Is there
a statistically significant difference between two groups of curves (e.g. differential
expression)? Are there statistically significant relationships among functional ran-
dom variables? (see Ramsay et al., 2009) Functional t-tests can be used to test
for significant differences between groups of curves. The functional version of the
t-test statistic has the form

T (t) =
|x̄1(t) − x̄2(t)|√

1
n1

Var[x1(t)] + 1
n2

Var[x2(t)]
, (22)

where x̄1(t) and x̄2(t) denote the mean in group 1 and group 2 respectively, n1 and
n2 denote the sample sizes in group 1 and group 2 respectively and Var[x1(t)] and
Var[x2(t)] denote the variance in each group. Since functional data are high dimen-
sional, permutation tests are used to determine a null distribution for T (t). This
involves randomly permuting the labels on the expression profiles and calculating
the maximum of T (t). This is repeated hundreds of times to obtain the null distri-
bution. An example is provided in Section 7.3.

Functional F-tests can be used to determine if significant relationships exist
between the functional random variables. The F-test statistic is given by

F(t) =
Var[ŷ(t)]

1
n

N∑
i=1

[yi(t) − ŷi(t)]2

, (23)

where ŷ are the predicted values from fitting a functional linear model. Again, a
null distribution is determined using a permutation test where the response curves
(or values) are shuffled and the maximum of F(t) is calculated. We believe that
utilizing such tests may provide alternative approaches to testing for differential
expression and the significance of relationships between expression profiles and
other covariate(s).

6.2 Principal Differential Analysis

There has been limited work focussing on using the derivative in microarray anal-
ysis though there has been some work involving derivatives when clustering and
discriminating between groups of expression profiles. Functional linear models can
be used to model derivatives, i.e. model Dyi(t), the rate of change of yi(t) instead



of yi(t). Such models are called dynamic models and are essentially differential
equations. A first-order homogeneous differential equation has the form

Dyi(t) = −yi(t)β(t) + εi(t) (24)

while a first-order non-homogeneous equation can be written

Dyi(t) = −yi(t)β0(t) − α(t)β1(t) + εi(t), (25)

where α(t) is called a forcing function and refers to external inputs into the system.
It is also possible to model higher order derivatives using higher-order differential
equations (see Ramsay and Silverman, 2005, Chapters 17-19). These models are
used to model the dynamics of a system and have the advantage of using the func-
tion itself as a covariate. Utilizing dynamic models is called principal differential
analysis (PDA) in functional data analysis literature and could be highly useful in
the analysis of temporal gene expression data since gene expression can be thought
of as being part of a biological system. These models could be used to describe the
relationship between the rate of change of expression of one gene and the level of
expression of other genes in the system. This could provide real insight into how
genes are related. See Section 7.4 for a simple example.

6.3 Functional Canonical Correlation Analysis

Functional canonical correlation analysis (fCCA) deals with the case where pairs
of functions (xi(t), yi(t)) are observed for each individual. For example, say we
have expression profiles for genes in the embryo phase of development and expres-
sion profiles for the same genes in the adult phase of development of Drosophila
melanogaster (fruit fly). fCCA aims to determine the modes of variability in the two
sets of curves that are most associated with one another, i.e. find a pair of functions
(ξ(t), η(t)) such that the canonical variates

ρξi =

∫
T

ξ(t)[xi(t) − x̄(t)]dt (26)

and
ρηi =

∫
T

η(t)[yi(t) − ȳ(t)]dt (27)

are highly correlated with each other. ξ(t) and η(t) are the modes of variation that
account for most of the interaction between expression profiles in the embryo phase
and expression profiles in the adult phase (Ramsay and Silverman, 2005). This is
related to functional linear regression, though this provides a symmetric view on



the relationship since it does not require one variable to be specified as the response
variable and the other as the predictor variable (Ramsay et al., 2009). To determine
ξ(t) and η(t) it is necessary to optimize the canonical correlation criterion

ccorsq(ξ, η) =
[cov(ρξi , ρηi)]

2

(varρξi)(varρηi)
, (28)

where ρξi and ρηi are as defined in (26) and (27) respectively. Maximizing ccorsq
as given above may not yield interpretable results due to lack of smoothness of
the estimates of ξ(t) and η(t). Therefore there is a need to incorporate smoothing
into the optimization problem. This is achieved by penalizing the curvature of the
canonical variate weight functions as shown in Section 2. This yields the smoothed
canonical correlation criterion

ccorsqλ(ξ, η) =
[cov(ρξi , ρηi)]

2

[var(ρξi) + λ‖D2ξ‖2][var(ρηi) + λ‖D2η‖2]
, (29)

where λ can be chosen via cross-validation or generalized cross-validation. As with
FPCA, a series of canonical variate weight functions (ξ1, η1), (ξ2, η2), (ξ3, η3), . . .
can be determined by optimizing ccorsqλ subject to the constraint that successive
weight functions are orthogonal. Ramsay and Silverman (2005), Chapter 11 and
Ramsay et al. (2009), Chapter 7 give full implementation details for fCCA. fCCA
may prove to be a useful tool in microarray analyses since it can identify variations
in behavior patterns not evident from other techniques. For example, fCCA can
examine how expression levels vary from the embryo phase to the adult phase of
Drosophila melanogaster and establish how changes in one phase influence (or are
influenced by) changes in the other phase.

7 Examples

7.1 Clustering Using FPCA

The estimated functions and corresponding derivative estimates for the 399 Drosophila
genes are displayed on the LHS and RHS of Figure 1 respectively. The LHS of Fig-
ure 2 displays the scree plot of the eigenvalues of the FPCs estimated using the
original expression curves. This plot indicates that the first 3 FPCs should be re-
tained. These FPCs are shown on RHS of Figure 2 and account for over 94% of
the variation in the data. The first 4 FPCs estimated using the first derivative of
the expression profiles as displayed in Figure 3 account for 84% of the variation in
the data. Though the scree plot indicate that FPC 5 could also be included in the



analysis, the plot of FPC 5 shows that this component contains lots of oscillations
and therefore is most likely attributable to noise. The vectors of scores for these 3
(4) FPCs were then supplied to mclust. The resulting clusters are shown in Figures
4 and 6. The first derivative of the members of each cluster are given in Figures 5
and 7.
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Figure 1: LHS: Estimated gene expression curves. RHS: Estimated first derivative
of gene expression curves.
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Figure 2: LHS displays the eigenvalues obtained using the original expression pro-
files. RHS displays the first 3 FPCs.
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Figure 3: LHS displays the eigenvalues obtained using the first derivative of the
expression profiles. RHS displays the first 4 FPCs.
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Figure 4: Clusters determined using the scores of the first 3 FPCs extracted using
the original expression profiles.
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Figure 5: Derivatives of the clusters determined using the scores of the first 3 FPCs
extracted using the original expression profiles.
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Figure 6: Clusters determined using the scores of the first 4 FPCs extracted using
the first derivative of the expression profiles.
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Figure 7: Derivatives of the clusters determined using the scores of the first 4 FPCs
extracted using the first derivative of the expression profiles.



Deriv FPC Class
Func FPC Class 1 2 3 4 5

1 47 7 14 14 57
2 22 78 23 36 12
3 1 1 25 1 0
4 2 47 1 6 5

Table 1: Classification table

Table 1 displays a comparison of the classifications for each method. Cluster
1 obtained using the original expression profiles mainly consists of a combination of
observations from Clusters 1 and 5 obtained using the first derivative of the expres-
sion profiles. The additional separation of these observations into two clusters as
achieved using the derivatives appears to differentiate between genes whose expres-
sion levels peak almost immediately (typically before time 2) before decreasing for
the remainder of the cycle (Cluster 1) and genes with expression levels that exhibit
a more gradual increase in expression levels (to a peak value at approximately time
5) before decreasing for the remainder of the cycle (Cluster 5). Cluster 3 for both
methods identifies genes whose expression levels change little throughout the cycle
though using the derivatives has identified 35 more genes belonging to this cluster.
Clusters 2 and 4 determined using the functions contain 232 genes while Clusters 2
and 4 determined using the derivatives contain 190 genes. Cluster 4 is the main dif-
ference between both methods. Using the derivative has identified genes exhibiting
a rapid decrease in expression levels in the initial stage of the cycle before gradually
increasing for the remainder of the cycle. Such a cluster is not evident when using
the original expression profiles.

Figures 5 and 7 provide a means of examining the derivatives of the observa-
tions in the clusters obtained for each method. The derivatives of the observations
in the clusters obtained using the original expression profiles as shown in Figure
5 exhibit lots of oscillations and there is a large amount of variation exhibited in
each cluster. Therefore it is difficult to determine any distinct shapes or patterns
of behavior in the clusters. In contrast, examining the derivative estimates of the
observation in the clusters obtained using the first derivative of the expression pro-
files as shown in Figure 7 reveals clear patterns of behavior in each cluster. There
is reduced variation in the derivative estimates within each cluster suggesting that
clustering based on the FPC scores of the derivative determines more homogeneous
clusters than clustering based on the FPC scores of the original functions. The ho-
mogeneous clustering of the derivatives translates back into homogeneous clusters



in the original data. As a result it is clear that the derivative contains additional
information to that given by the functions and use of the derivative may prove a
highly useful tool in the analysis of time-course microarray gene expression data.

7.2 Functional Regression Analysis

The following describes an application of functional regression analysis to a subset
of the Drosophila Melanogaster dataset analyzed by Arbeitman et al. (2002). The
authors identified a group of “strictly maternal” genes or genes that were expressed
in the embryo phase and then re-expressed in the pupal-adult phase of female flies.
Therefore we wish to model the relationship between expression levels in the pupal-
adult phase, yi(t), and expression levels in the embryo phase, xi(t). In this instance
both the response and the predictor variables are functions as shown in Figure 8.
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Figure 8: LHS displays the smooth expression profiles in the pupal-adult phase
yi(t). RHS displays the smooth expression profiles in the embryo phase xi(t).



It is assumed that there is a functional relationship of the form

yi(t) = α(t) +

∫
T

xi(s)β(s, t)ds + εi(t), (30)

where α(t) is the intercept function and β(s, t) is the regression surface to be esti-
mated as in (14). It is assumed that yi(t), xi(t) and β(s, t) can be represented as a
linear combination of basis functions as shown in (15). We chose a large number
of B-spline basis functions and accounted for over-fitting using the regularization
approach in (16). However since the response is also a function in this example, the
criterion to be optimized is now given by

PENSSE =

∫
T

N∑
i=1

[yi(t) − α(t) −
∫
T

xi(s)β(s, t)ds]2dt + PENλ1,λ2[β(s, t)], (31)

where

PENλ1,λ2[β(s, t)] = λ1

∫
T

[D2β(s, t)]2dtds + λ2

∫
T

[D2β(s, t)]2dsdt, (32)

D2 denotes the second derivative and two penalty terms and associated smoothing
parameters (λ1 and λ2) are now required, one to account for over-fitting in the s
direction and the other to account for over-fitting in the t direction. The above
model can be fitted using the fda package in R.

The estimated regression surface for the strictly maternal genes is shown in
Figure 9. Genes with lower expression levels early in the pupal-adult stage have
higher embryo expression over time. However, this effect is reversed for the later
stages of pupal-adult expression where genes with higher expression levels at this
stage have lower embryo expression over time. As stated in Section 5.3, these data
are also analyzed in Müller et al. (2008) though these authors use the principal
components approach to model the response, predictor and regression functions. It
can be seen that both analyses yield similar results, with the same interpretation for
β(s, t).
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Figure 9: Estimated regression surface β(s, t).

7.3 Functional t-Test

The previous section examines the relationship between expression levels in the
embryo stage and pupal-adult stage of development of female flies. However, the
expression profiles of male flies were also recorded in the pupal-adult stage by
Arbeitman et al. (2002). Figure 10 suggests that female flies (black curves) have
higher expression levels of strictly maternal genes than male flies (red curves) in
the pupal-adult phase.

To test for differential expression between male and female flies, a functional
t-test can be performed where the test statistic has the form:

T (t) =
|x̄F(t) − x̄M(t)|√

1
nF

Var[xF(t)] + 1
nM

Var[xM(t)]
. (33)

Critical values for T (t) are determined using a permutation test by randomly shuf-
fling the male (M) and female (F) labels on the curves and calculating the maximum
of T (t) using these new labels. This is repeated many times and a null distribution
is constructed. Figure 11 displays the observed test statistic T (t) and corresponding
critical values and indicates that there is no significant difference between the ex-
pression levels of male and female flies until just after the onset of adulthood where
expression levels of these genes in females is significantly higher than males.
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Figure 10: Black lines are the expression profiles of female flies. Red lines are the
expression profiles of male flies.
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7.4 Principal Differential Analysis

A major advantage of FDA over multivariate techniques is that it facilitates the
use of derivative information in the curves. This may be particularly useful in time-
course microarray data analyses since gene expression is part of a biological system
and such systems are typically modeled using differential equations. As stated in
Ramsay and Silverman (2005), differential equations can describe the features in
both the curve and its derivative for a single functional datum but can also describe
the variation across observations in a sample of N curves. Principal differential
analysis as outlined in Section 6, is a FDA technique which aims to satisfy one of
the latter criteria. To demonstrate a simple application of PDA in a time-course
microarray setting, the dynamics of expression profiles in the pupal-adult stage of
development for the strictly maternal genes of female flies are modeled. It should
be noted that the following results are tentative and do not constitute an indepth
PDA of these data.

The data used in this example are plotted on the LHS of Figure 8. Let yi(t)
denote the pupal-adult expression profiles and initially assume that a homogeneous
first order differential equation is appropriate such that

Dyi(t) = −β(t)yi(t) + εi(t), (34)

where β(t) is a coefficient function to be estimated. To determine how well this
model fits the data, the residual functions are plotted and are displayed on the LHS
of Figure 12. It is clear that the first order equation is not fitting the data well be-
tween times 15 and 20 as the residual functions show a clear pattern in this interval.
Therefore, a second order homogeneous equation is used such that

D2yi(t) = −β1(t)Dyi(t) − β0(t)yi(t) + εi(t), (35)

where D2yi(t) represents the second derivative of yi(t) and β0(t) and β1(t) are coeffi-
cient functions to be estimated. Each term in the model represents a different force
on the system. The first term in this model is proportional to the speed at which
the system moves, while the second term position-dependent forces. See Ramsay
and Silverman (2002), Ramsay and Silverman (2005) and Ramsay et al. (2009) for
additional details. The residuals from this model are displayed on the RHS of Fig-
ure 12 and appear to be more satisfactory than those obtained using a first order
equation.

It is then necessary to interpret the coefficient functions β0(t) and β1(t). This
can be difficult and therefore the discriminant function given by

d(t) =
β1(t)2

4
− β0(t) (36)
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Figure 12: LHS displays residuals of first order equation. RHS displays residuals
of second order equation.

is used where the sign of this function is important. When d(t) is negative, β1(t)
is small and the system tends to exhibit some oscillation that gradually disappears.
When d(t) is positive, β1(t) is relatively large and either becomes stable so quickly
that no oscillation is observed (β1(t) > 0) or oscillates out of control (β1(t) < 0).
When d(t) = 0 the system is in linear motion. Figure 13 displays β1(t) and d(t)
for the pupal-adult data. d(t) is is initially negative which corresponds to an initial
increase in energy marking the beginning of gene expression, followed by a period
when d(t) = 0 and the system is in equilibrium. During this time, expression levels
are relatively stable. At approximately time 15 (i.e. the onset of adulthood) d(t)
quickly becomes negative. At this point the system is exhibiting some oscillatory
behavior corresponding to an increase in energy in the system prior to the large
jump in expression levels between times 16 and 21. However after this initial burst
the change in expression levels is quite stable. From time 21 onwards d(t) is posi-
tive and β1(t) is negative implying that after the sharp increase in expression levels
between times 16 and 21, the system contains a vary large amount of energy and is
behaving like a rapidly oscillating spring. From this simple example it can be seen
that PDA gives real insight into the dynamics of expression profiles in this group
of genes. We believe that PDA may be particularly useful when examining differ-
ences between the expression levels of genes across two groups, e.g. across two
treatment conditions, where information about how the behavior of the derivatives
differ across groups may give additional information regarding why expression lev-
els differ. All of the above analysis was carried out using the fda package in R.
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8 Conclusion
This paper has presented a review of the applications of functional data analysis
to time-course microarray experiments. There are a number of issues encountered
with such experiments: the high dimensionality of expression profiles and the small
sample sizes, correlation between observations on the same gene, unequal sampling
of data, missing data, large levels of measurement error, etc. FDA deals with each
of these issues and as demonstrated in this article, provides numerous advantages
over multivariate methods that have traditionally been popular choices. Though
FDA was originally introduced by Ramsay and Dalzell (1991), applications to mi-
croarray data have only begun to appear in the last decade. There has been a large
increase in the number of papers utilizing FDA in a bioinformatics setting and we
believe that as microarray experiments produce larger volumes of data, FDA meth-
ods will become increasingly required. There has already been an expansion of
FDA into other areas of interest in gene expression analysis other than clustering,
discrimination and linear modeling as presented here. For example, Opgen-Rhein
and Strimmer (2006) use FDA to identify genetic networks using Gaussian graph-
ical models and again suggest that adopting the FDA approach is advantageous
since it allows for the identification of the dependency across the whole time inter-
val rather than at single points in time. We also believe that other FDA techniques



such as functional t-tests and F-tests, principal differential analysis and functional
canonical correlation analysis will prove extremely useful in a bioinformatics set-
ting and provide additional insight into gene expression dynamics.

In conclusion, it should be noted that though this paper aimed to provide
as thorough a review as possible of FDA procedures in bioinformatics literature,
there may be some work that we are not aware of and thus have not included. We
therefore apologize to the authors of papers that were not cited in this article.
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