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SUMMARY

Public Infrastructure as a Service (IaaS) clouds such as Amazon, GoGrid and Rackspace deliver
computational resources by means of virtualisation technologies. These technologies allow multiple
independent virtual machines to reside in apparent isolation on the same physical host. Dynamically scaling
applications running on IaaS clouds can lead to varied and unpredictable results due to the performance
interference effects associated with co-located virtual machines. Determining appropriate scaling policies
in a dynamic non-stationary environment is non-trivial. One principle advantage exhibited by IaaS clouds
over their traditional hosting counterparts is the ability to scale resources on-demand. However a problem
arises concerning resource allocation as to which resources should be added and removed when the
underlying performance of the resource is in a constant state of flux. Decision theoretic frameworks such
as Markov Decision Processes are particularly suited to decision making under uncertainty. By applying a
temporal difference reinforcement learning algorithm known as Q-learning, optimal scaling policies can be
determined. Additionally reinforcement learning techniques typically suffer from curse of dimensionality
problems, where the state space grows exponentially with each additional state variable. To address this
challenge we also present a novel parallel Q-learning approach aimed at reducing the time taken to determine
optimal policies whilst learning online.

KEY WORDS: Reinforcement Learning, Cloud Computing, Resource Scaling

1. INTRODUCTION

IaaS clouds rely on economies of scale to deliver computational resources to consumers in a cost
effective way. Sourcing computational resources from IaaS clouds eradicates the cost associated
with maintaining the equivalent resources in-house. Similar to traditional utilities such as electricity
and gas [5], consumers typically pay only for what they use, provisioning resources as needed
in an on-demand fashion. This elasticity or ability to scale resources as required is one of the
principle differences between computational clouds and previous utility computing forms such as
computational grids and clusters, which require advanced reservations. In delivering resources to
consumers, Infrastructure as a Service (IaaS) providers utilise virtualisation technologies such as
Xen [4] and VmWare [31] to partition a single physical server into multiple independent Virtual
Machines (VMs). These VMs reside in a co-located manner and have no visibility or control over
the host environmental configuration or neighbouring VMs. Figure 1 demonstrates a typical cloud
scenario where multiple VMs are co-located on a single physical host server. Depending on its
configuration each VM is allocated a portion of the physical host resource i.e. CPU cycles, RAM,
Disk and Network bandwidth. A Virtual Machine Monitor (VMM) is installed on the physical host
and is responsible for controlling VM access to the host’s resources. The VMM attempts to isolate
individual VMs with respect to security, failure and their respective environment, but not in respect
of performance [13, 22]. Consequently performance unpredictability has been identified as one of
the key obstacles facing growth and greater adoption of cloud computing [2]. Much uncertainty
exists in relation to how ported applications will perform, and indeed scale, once they are deployed
in the cloud.
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Figure 1. Physical host with three instantiated virtual machines.

Dynamically scaling applications on large IaaS clouds in response to workload or performance
changes presents a key challenge for resource planning techniques and application management. An
effective scaling solution should allocate resources to optimise factors such as cost, performance and
reliability. The solution itself should also be scalable i.e. capable of dealing with large workloads
and complex resource allocation decisions. The current approach favoured for allocating resources
to applications based on fluctuating numbers of requests and application performance is to define
threshold based policies [19, 20]. These are rule based approaches, where upper and lower bounds
are defined based on an observable metric such as application response time. With this approach
applications can scale up to meet demand at peak times and scale back once demand has subsided.
Determining appropriate thresholds however requires expert domain and application knowledge
and must often be redefined based on application updates or workload changes. Consider an
enterprise application for a large multinational corporation. The application is accessed on a daily
basis by a globally distributed workforce. It is powered by three separate data centres, situated in
strategic geographical locations for optimal user support. Software such as enterprise applications
by their nature are complex entities and can suffer performance differential due to a multitude of
factors, including application instance configuration, underlying platform anomalies and resource
interference. Defining a threshold based policy for an application as diverse as this would prove
extremely difficult as the designer would need extensive knowledge of both the application domain,
user usage patterns, seasonal effects and intermittent anomalies. Agent learning techniques such
as reinforcement learning are ideally suited to these types of problems. They can learn without
prior knowledge of the domain and they update their environmental knowledge based on actual
observations. Over time a stationary policy can be found approaching optimality.Since one cannot
guarantee the performance of the underlying resource, naively adding similar resources to ensure
compliance may not be an optimal strategy.

Recently efforts have been made to develop more adaptive policies towards informing resource
allocation decisions. Autoscaling policies should in essence be hyperopic, forgoing short term gains
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in an effort to realise greater long term benefits. Policies should also be adaptive to variations
in the underlying resource performance and scale in the presence of new or unseen workloads
combined with large numbers of resources. Significant work has focussed on decision theoretic
planning techniques such as Markov Decision Processes, combined with reinforcement learning
techniques. The strength of these approaches is their ability to reason under uncertainty, which
maps well onto the stochastic cloud environment. However there are a number of issues that have
not been satisfactorily answered by existing research. One of the major drawbacks associated with
reinforcement learning techniques when it comes to solving large real world problems, is the
length of time it takes to converge to optimal or near optimal policies. In a dynamic scalability
context this is the time it takes the learning agent to determine an optimal policy for the given
environment. One approach aimed at addressing this problem is to develop a hybrid [29] mechanism
in which the learning approach is trained using a good external policy, which potentially could be
computed offline using sample data. The problem with this approach is that there are still challenges
involved in determining a good initial policy. In addressing these challenges this paper proposes
a novel mechanism that takes advantage of the inherent parallelism associated with distributed
computational platforms such as computational clouds. The approach involves agents learning in
parallel on the same auto-scaling task and sharing information regarding their experiences. This
serves two functions, firstly it decreases the length of time its takes agents to determine optimal
resource allocations to support application scaling. Secondly the approach is scalable as the number
of resources grows, due to the increasing numbers of learners as a function of the number of
resources. Finally to facilitate learning in computational clouds we also devise a novel state action
space formalism which is capable of learning optimal policies in computational clouds.

The principle contributions of this paper are the design and testing of:

• Variable workload and performance model: The development of a model based Q-learning
approach, which defines a novel state action space formalism capable of determining optimal
resource allocation policies in a realistic cloud setting. Uniquely the output policy reasons
across both the variable workload model and the underlying resource performance model.
• Parallel reinforcement learning: A parallel reinforcement learning architecture which

successfully parallelises Q-learning to speedup convergence rates of agents attempting to
auto-scale resources in parallel.

The rest of this paper is structured as follows: Section 2 explains the causes of performance
variability and details our results from microbenchmarking different instance types on Amazon’s
EC2. Section 3 provides an overview of relevant and related work in this field. Section 4 details
Markov Decision Processes, the reinforcement learning framework and the parallel reinforcement
learning approach. Section 5 specified our auto-scaling model for both single agent and parallel Q-
learning Section 6 details our experimental findings, leading finally to Conclusions & Future Work.

2. CLOUD PERFORMANCE ANALYSIS

The current resource delivery mechanism favoured by IaaS clouds has been largely based on
virtualisation technologies. Virtualisation allows for multiple VMs containing disparate or similar
guest operating systems, to be deployed in apparent isolation on the same physical host. This
multi-tenant environment where agents share and compete for resources on the same host can
lead to substantial variability. From the application’s performance perspective a variable underlying
supportive resource will cause fluctuations in its performance. This section benchmarks a number
of IaaS instances on Amazon EC2 to highlight these issues.

2.1. Xen Hypervisor

The sharing of resources amongst the respective VMs is handled by the Virtual Machine Monitor
(VMM) [4], an independent domain level monitor which has direct access to the underlying
hardware. Xen is a popular open source virtualisation framework, supporting a wide range of
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guest operating systems and is used by a large number of cloud providers including Amazon
Web Services. Xen facilitates a software layer known as the Xen Hypervisor which is inserted
between the server’s hardware and the operating system. This allows the physical host to deploy
multiple VMs in isolation, decoupling the operating system from the physical host. However whilst
virtualisation technologies such as Xen provide excellent security, fault and environmental isolation
they do not ensure performance isolation. Koh et. al. [13] state that there are three principle causes
of this interference. The first cause is due to the fact that each independent VM on the hypervisor
has its own resource scheduler which is attempting to manage shared resources without the visibility
of others. Secondly guest operating systems and applications inside a VM have no knowledge about
ongoing work in co-located VMs and are unable to adapt in response. Thirdly some hypervisors such
as the Xen Hypervisor offload operations such as I/O operations to service VMs. This particularly
affects I/O-intensive applications as the Xen hypervisor forces all I/O operations to pass through
a special device driver domain, this forces the context to switch into and out of the device driver
domain causing interference.

In general the greater the activity of neighbouring VMs, the greater the potential for interference,
which directly results in variable application performance. When booting up instances in the cloud
an auto-scaling controller will not be able to control the type of VM it is co-located with or the
activity of it.

Table I displays three different VM instances and their associated properties currently supported
by Amazon EC2. In addition to the performance interference as a result of virtualisation, the type of
instance allocated to the application will impact on performance. Amazon rate the I/O performance
of the respective instances as Low, Moderate and High, which means the VMs with High should
receive a greater amount of dedicated I/O bandwidth. As newer hardware is added to the datacenter
replacing older models, the physical host your VM resides on could be a determinant in performance
also.

2.2. Microbenchmarking EC2

As previously discussed the nature of shared virtualisation instances leads towards performance
unpredictability as the underlying CPU, RAM and disk are shared amongst the VMs residing
on the physical host. One aspect of the computational resource that is particularly sensitive to
interference on virtualised platforms is network and disk I/O. To evaluate this we carried a
series of microbenchmarks on a number of EC2 instances to demonstrate disk I/O performance
variability exhibited by storage volumes on IaaS clouds. We used the filebench∗ benchmarking
utility to demonstrate sequential/random read/write performance. Filebench is a multi threaded,
cross-platform benchmarking tool, capable of running an array of synthetic workloads designed to
evaluate disk I/O analysis. The results displayed here highlight the variability deployed applications
will observe in relation to I/O performance. Further analyses of performance [11] and performance
interference [22] on I/O workloads have previously been published.

Each VM instance on Amazon EC2 can support two different types of storage volume. Instance
based or ephemeral storage are storage volumes located within the physical host and shared amongst
the resident VMs. Elastic Block Storage (EBS) volumes are network attached storage devices which
are connected via a 1Gbps Ethernet connection. We evaluate both of these in terms of performance.

∗http://sourceforge.net/projects/filebench/

Table I. Instance types and costs for US-East Virginia

Instance Type Memory ECUs Disk Cost (per/hr) I/O Performance
m1.small 1.7GB 1 160GB $0.085 Moderate

c1.medium 1.7GB 5 350GB $0.17 Moderate

m1.large 7.5GB 4 850GB $0.34 High
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(a) m1.large Random Read
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(b) m1.large Random Write
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(c) m1.large Sequential Read
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(d) m1.large Sequential Write

Figure 2. Sequential read/write and random read/write performance variability observed for 2 m1.large
instances running on Amazon EC2

In testing disk I/O performance on EC2, we selected four workload profiles to evaluate the random
read/write and sequential read/write performance for an m1.small, c1.medium and m1.large instance
on the Amazon EC2 cloud. For each experiment we created two instances of each type in a separate
availability zone in the US-East Virginia datacentre. The experiments began on a Tuesday evening
at 19 : 00 UTC and ran for a total of 24 hours. We chose a midweek starting point in order to emulate
as closely as possible the variability which would occur during an average working week. The total
number of experiments ran over the 24 hours is 1152. The following four workload profiles were
designed to evaluate each instance type:

• Sequential Read. This workload profile evaluates large sequential file reads. For this
experiment the file size was set to be larger than the allocated RAM, 6 Gb in the case of the
m1.small/c1.medium instances and 10 Gb in the case of the m1.large instance. This eliminated
possible interference due to memory caching. To get a true reflection of the underlying
performance, caching was disabled, the iosize was set to 1 MB, and single threaded execution.
The experiment was ran for 20 mins, for both EBS and Ephemeral storage each hour, allowing
for a steady state evaluation of performance.
• Sequential Write This workload profile evaluates large sequential file writes. The individual

file write sizes were set to 1 MB each. Caching was again disabled, with syncing enabled.
This was executed single threaded. The file sizes generated through writing were 6 Gb for
m1.small,c1.medium and 10 Gb for m1.large.
• Random Read This workload profile evaluates random file read performance. Caching

was disabled, individual read sizes (iosize) was set to 2K, with single threading. Each run
generated 128 MB of read data.
• Random Write This workload profile evaluates random write performance. Caching was

disabled, synchronisation was enabled. The file sizes were set to be larger than the available
RAM at 6 GB for m1.small, c1.medium instances and 10 GB for m1.large instances.
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Table II. Summary

Profile Instance Type Average EBS (MB/s) Average Ephemeral (MB/s)
Sequential Read m1.small 78.22 62.01
Sequential Write m1.small 17.48 30.19

Random Read m1.small 0.27 0.3
Random Write m1.small 0.2 0.19

Sequential Read c1.medium 74.04 107.81
Sequential Write c1.medium 32.63 29.09

Random Read c1.medium 0.57 0.3
Random Write c1.medium 0.2 0.2

Sequential Read m1.large 60.02 90.26
Sequential Write m1.large 35.38 33.98

Random Read m1.large 0.81 0.53
Random Write m1.large 0.36 0.39

Figure 2 illustrates the sequential/random read/write performance of the m1.large instance for
both the EBS and Ephemeral storage volumes. It clearly demonstrates hourly deviations in the total
throughput exhibited in both read and write performance. Table II details a tabular breakdown of
all the instances tested. The average throughput in both EBS and Ephemeral storage is displayed.
According to Amazon both the small and medium instances should achieve a Moderate I/O
performance whilst the large should be High. However the results clearly show high variability
across all the instances with the small and medium instances outperforming the large instance for
the Sequential Read workload profile. This was most surprising as theoretically the large instance
should have had a greater share of local disk bandwidth and thus should have had a much higher
performance on the ephemeral storage across all the workload profiles. In relation to EBS storage
the large instance had a superior read and write performance over the small and medium instance
in all profiles except the Sequential Read profile. Interestingly EBS volumes also suffer from multi-
tenancy issues, as the storage volumes are also virtualised over many devices. In addition the EBS
volumes are also bound by network bandwidth and can suffer from network related problems such
as congestion. With EBS the user also has no control over the location of the storage volume or
positioning relative to other tenants. The results clearly demonstrate the high degree of uncertainty
present in relation to I/O performance in the cloud, even on an hourly granularity. Cloud providers
such as Amazon do provide Service Level Agreements regarding resource availability but they do
not provide any QoS guarantees on performance.

In order to handle this variability an auto-scaling technique must be capable of reasoning across
changing workloads and resource performance. It should also be dynamic to fluctuations in real
time and capable of handling scenarios it has no prior experience of.

3. BACKGROUND RESEARCH

Threshold based policies are one of the most popular mechanisms for the auto scaling of applications
in the cloud both from a commercial and research perspective. Our background research examines
these with respect to the most relevant in application scalability in computational clouds. We
also examine reinforcement learning approaches to resource allocation and application support, to
contextualise the contributions of this paper over previous automated control learning approaches.

3.1. Dynamically Scaling Applications on Clouds : Threshold Based Approaches

Public computational clouds such as Amazon EC2 [1] provide commercial auto scaling solutions
to facilitate resource allocation based on predefined metrics. Amazon’s Auto Scaling [3] software
in conjunction with their proprietary CloudWatch [7] monitoring system can be used to control
automated resource allocation decisions based on pre-defined metrics. These metrics stipulate
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decision points at which an action is triggered i.e. to add or remove a particular instance type.
RightScale [24] similarly allows for the definition of process load metrics which trigger allocation
responses once a given metric has been breached. Rightscale facilitates the allocation of resources
to applications running across multiple clouds. With this approach a mapping must exist denoting
the representative action which must be executed once a specific threshold has been breached. These
rule based systems are generally called threshold based approaches in the literature. Threshold
based policies such as those employed by RightScale and Amazon’s Auto Scaling, tend to focus
on scaling at the machine or VM level. They do not facilitate the definition of higher business
functions and objectives when scaling a given service or application running on the cloud. Instead
the application’s resources are altered through allocation and deallocation of VMs. Rodero-Merino
et. al. [25] proposes a dynamically scaling solution aimed at addressing this issue. Their proposed
solution operates at a higher level of abstraction than those offered currently by IaaS providers.
It decomposes high level objectives specified in a Service Description File, which also contains
the scalability rules defined by the Service Provider. The paper examines three different scalability
mechanisms which facilitate a holistic approach to service management on federated clouds. Their
developed application layer is called Claudia and it additionally employs a Virtual Infrastructure
Management solution which avoids vendor lock-in and can interface between different clouds.
Moran et. al. argued that the mechanisms employed by Claudia were not expressive enough to enable
a fine grained control of the service at runtime [17]. The scalability rules defined are specified in
an ad hoc manner and are not designed with generality. To interchange the abstract level languages
used to specify applications behaviour in clouds, they propose the usage of the Rule Interchange
Format, in conjunction with the Production Rule Dialect. This generates an appropriate mapping
to industry rule engines such as JBoss Drools or Java Jess. These approaches improve upon the
industrial led approaches offered by Amazon and Rightscale in attempt to auto scale applications
in a more holistic manner but they still require a certain amount of domain knowledge, with rules
and conditions required to be defined for different environmental states. Planning in advance the
appropriate corrective action can prove extremely difficult especially when one has to consider a
large number of possible states [8, 26].

Threshold based approaches have also been developed towards elastic storage solutions. Lim et
al. developed an automated controller for elastic storage in a cloud computing IaaS environment
based on proportional thresholding [15]. The controller was broken down into three components;
a Horizontal Scale Controller for adding and removing nodes; a Data Rebalance Controller,
for controlling data transfers; and a State Machine to coordinate the actions. This approach
demonstrated speedy adaption to fast changing events, however this is not always optimal given
a particular event may be very short lived. Also in the absence of a formalised state space it lacks
the predictive power to respond to highly varying workloads.

The benefits of reinforcement learning methods is their ability to reason under uncertainty based
only on environmental observations. A modification to the application, or change in the workload
request model would possibly require a model change for the threshold based approach. The
reinforcement learning approach will adapt to suit the environment based on its own experience.

3.2. Auto-Scaling Resources : Decision Theoretic Approaches

Tesauro investigated the use of a hybrid reinforcement learning technique for autonomic resource
allocation [29]. He applied this research to optimizing server allocation in data centres, where
homogenous application servers were added and removed based on a hybrid reinforcement
learning technique. This work demonstrated the learning approach’s capability to maintain sufficient
response times, governed by a Service Level Agreement, across a number of applications. David
Vengerov combined reinforcement learning with a fuzzy rulebase to allocate CPU and memory from
a common resource pool to multiple entities [30]. This work focussed on the problem of distributing
resources from a common resource pool to multiple entities, such as in a grid or data centre.

J. Perez et al. [21] applied reinforcement learning to optimise resource allocation in Grid
computing. This work focused on optimising the utility of both the users submitting jobs and the
institutions providing the resources through Virtual Organisations. Virtual Organisations consist
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of a set of individuals or organisations that share resources and data in a conditional and
controlled manner [9]. Galstyan et al. [10] implemented a decentralised multiagent reinforcement
learning approach to Grid resource allocation. With incomplete global knowledge, and no agent
communication, the authors showed that the reinforcement learning approach was capable of
improving the performance of large scale grid.

More recently [8] a Q-learning approach was developed for allocating resources to applications
in the cloud. This work developed an automated controller capable of adding and removing VMs
based on a variable workload model. The author presented an adaptive approach capable of keeping
up with a variable workload model driven by a sinusoidal function. Using convergence speedups,
Q function initialisation and model change detection mechanisms, the author was able to fine tune
the approach. Rao et al [23] developed a reinforcement learning approach to VM autoconfiguration
in clouds. In response to changes in demand for applications the VM itself is reconfigured. The
approach was able to determine near optimal solutions in small scale systems.

The key difference between our approach and these works is that they focus on determining
policies for allocating resources to match a variable workload or user request model. Our approach
supports multiple criteria in that the outputted policy considers both the variable workload and the
underlying performance model. The approach also facilitates learning across geographical regions
where it is capable of reasoning about the temporal performance variances associated with the
cloud. In addition to improve the time taken to approximate optimal or near optimal policies we
have devised a parallel learning approach. This is first time a parallelised reinforcement learning
approach has been applied in this context. Previous approaches to reducing the state space size
and improving convergence times involve hybrid [29] learning approaches and utilising function
approximation [30] techniques.

4. REINFORCEMENT LEARNING - THEORETICAL FOUNDATIONS

Reinforcement learning has been applied successfully across a range of domains supporting the
automated control and allocation of resources [6, 12, 27, 33]. It operates on the basic premise of
punishment and reward, with agents biased towards actions which yield the greatest utility. Much
of reinforcement learning theory is based on determining optimal policies for Markov Decision
Processes.

4.1. Markov Decision Processes

Reinforcement learning problems can generally be modelled using Markov Decision Processes
(MDPs). In fact reinforcement learning methods facilitate solutions to MDPs in the absence of a
complete environmental model. This is particularly useful when dealing with real world problems
as the model can often be unknown or difficult to approximate.

MDPs are a particular mathematical framework suited to modelling decision making under
uncertainty. A MDP can typically be represented as a four tuple consisting of states, actions,
transition probabilities and rewards.

• S, represents the environmental state space;
• A, represents the total action space;
• p(.|s, a), defines a probability distribution governing state transitions st+1 ∼ p(.|st, at);
• q(.|s, a), defines a probability distribution governing the rewards received R(st, at) ∼
q(.|st, at);

S the set of all possible states represents the agent’s observable world. At the end of each time
period t the agent occupies state st ∈ S. The agent must then choose an action at ∈ A(st), where
A(st) is the set of all possible actions within state st. The execution of the chosen action, results in
a state transition to st+1 and an immediate numerical reward R(st, at). Equation 1 represents the
reward function, defining the environmental distribution of rewards . The learning agent’s objective
is to optimise its expected long term discounted reward.
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Figure 3. Markov Decision Process with two states and two actions

Ra
s,s′ = E

{
rt+1|st = s, at = a, st+1 = s′

}
(1)

The state transition probability p(st+1|st, at) governs the likelyhood that the agent will transition
to state st+1 as a result of choosing at in st.

P a
s,s′ = Pr

{
st+1 = s′|st = s, at = a

}
(2)

The numerical reward received upon arrival at the next state is governed by a probability
distribution q(st+1|st, at) and is indicative as to the benefit of choosing at whilst in st. To illustrate
the workings a simple MDP, Figure 3 depicts a simple two state, two action MDP. In Figure 3,
choosing action A1 in State 1 will lead you to State 2 with a transition probability of 0.7 and back
to State 1 with a transition probability of 0.3. Choosing A2 will lead you to State 2 with a transition
probability of 0.4 and back to State 1 with a transition probability of 0.6. An agent currently in State
1 wishing to transition to State 2 has a greater probability of doing so should they choose action A1.

In the specific case where a complete environmental model is known, i.e. (S, A, p, q) are fully
observable, the problem reduces to a planning problem [18] and can be solved using traditional
dynamic programming techniques such as value iteration. However if there is no complete
model available, then one must either attempt to approximate the missing model (model based
reinforcement learning) or directly estimate the value function or policy (model free reinforcement
learning).

4.2. Q-learning

In the absence of a complete environmental model, model free reinforcement learning algorithms
such as Q-learning [32] can be used to generate optimal policies. Q-learning belongs to a collection
of algorithms called Temporal Difference (TD) methods. Not requiring a complete model of the
environment, TD methods possess a significant advantage. TD methods have the capability of being
able to make predictions incrementally and in an online fashion.
The update rule for Q-learning is defined as

Q(s, a)← Q(s, a) + α[r + γQ(s′, a′)−Q(s, a)] (3)

and calculated each time a state is reached which is nonterminal. Approximations of Qπ(s, a) which
are indicative as to the benefit of taking action a while in state s, are calculated after each time
interval. Actions are chosen based on π, the policy being followed. In this research we use an ϵ-
greedy policy to decide what action to select whilst occupying a particular state. This means that the
agents choose the action which presents it with the greatest amount of reward, most of the time. Let
A′(s) ⊆ A(s), be the set of all non-greedy actions. The probability of selection for each non-greedy
action is reduced to ϵ

|A′(s)| , resulting in a probability of 1− ϵ for the greedy strategy.
Estimated action values of each state action pair Qπ(s, a) are stored in lookup table form. The

goal of the learning agent is to maximize its returns in the long run, often forgoing short term gains
in place of long term benefits. By introducing a discount factor γ, (0 < γ < 1), an agent’s degree

(2011)



10

of myopia can be controlled. A value close to 1 for γ assigns a greater weight to future rewards,
while a value close to 0 considers only the most recent rewards. This represents a key benefit of
policies determined through reinforcement learning compared with threshold based policies. The
reinforcement learning based approaches are capable of reasoning over multiple actions, choosing
only those which yield the greatest cumulative reward over the entire duration of the episode. The
steps involved in Q-learning are depicted by Algorithm 1.

Algorithm 1 Reinforcement Learning Algorithm (Q-learning)
Initialize Q(s, a) arbitrarily

Repeat (for each episode)
Initialize s
repeat

Choose a from s using policy derived from Q (ϵ-greedy)
Take action a and observe r, s’
Q(s, a)← Q(s, a) + α[r + γmaxa′ Q(s′, a′)−Q(s, a)]
s← s′;

until s is terminal

Q-learning can often require significant experience within a given environment in order to learn
a good policy. Whilst it is easy to implement and can operate successfully in the absence of
a complete environmental model, it does not make efficient use of the data that it gathers as a
result of learning [16]. It can also take significant time to approximate the true value function Q∗.
In an environment where computational resources are relatively cheap and gathering real world
experience costly, an alternative approach is to parallelise the learning process amongst multiple
independent learning agents.

4.3. Parallel Reinforcement Learning

A learning agent can speed up the time it takes to learn an approximate model of the environment
if it does not have to visit every state and action in the given environment. If instead it could learn
the value of states it had not previously visited from neighbouring agents, then the time taken to
approximate Q∗ would be greatly reduced. Parallel learning approaches generally comprise one of
the following two approaches. Agents learn individually operating on the same task or agents learn
on a subset of the given task. Our approach is an example of the former, where all agents attempt
to allocate resources to support the scaling of the same application type. Whilst the agents operate
on the same learning task, they will all have different learning experiences due to the stochastic
nature of the environment i.e. they will visit different states, choose different actions and observe
different rewards. Previous work by Kretchmar [14] has demonstrated the convergence speedups
made possible by applying a parallel reinforcement learning approach in a general setting. Each
Q-learning agent independently maintains a local Ql and global estimate Qg of the approximate
Q-values. Qg is the agent’s global representation of Q. It consists of the combined experience of all
other learning agents exclusive of their own. This separation of personal experience from that of all
the other agents facilitates a weighted aggregation of experience. In environments exhibiting a high
degree of randomness an agent may weight its own experience over that of the global experience.
Qg is calculated by aggregating the weighted sum of Q-value estimates of all other agents according
to Equation 4.

Q(s, a) =
Q(s, a)l × Expcl +Q(s, a)g × Expcg

Expcl + Expcg
(4)

The agent makes decisions based on Q(s,a) the weighted aggregation of the local and global
estimates of Q. Algorithm 2 depicts the steps involved in our parallel learning approach. Firstly
both the local Q(s, a)l and global Q(s, a)g value estimates are initialised to 0. This is an optimistic
initialisation and encourages exploration in the early stages of learning. The communications arrays
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commsin and commsout are initially set to ∅. For all states visited the agent chooses an action a
using an ϵ-greedy policy π with respect to Q the combined global and local estimate. This policy
ensures that not all the agent’s actions are greedy with respect to Q. Sometimes the agent will
choose to act randomly, this balances the tradeoff between exploration and exploitation. A high
value of epsilon will bias the agent’s decisions towards exploration and a low value allowing the
agent to exploit its current knowledge. Based on the policy the agent executes the action a, observes
the reward r and next state s′. The agent then updates its estimate of Q(s, a)l in accordance with
Equation 3. If the difference between the Q value estimates are greater than a predefined threshold
θ then agent’s local estimate is added to the outgoing communications array commsout. This
information is then transmitted to all other learning agents. Initially quite a lot of data is transmitted
between agents, but as the local estimates converge to the global estimates the agents do not transmit
anymore information.

Algorithm 2 Parallel Q-Learning
Initialise Q(s, a)l = 0, Q(s, a)g = 0, Q(s, a) = 0
commsout, commsin ← ∅
π ← an arbitrary ϵ-greedy policy w.r.t to Q

repeat
for all s ∈ S do

Choose a from s using policy π
Take action a, observe r, s’
Q(s, a)l ← Q(s, a)l + α[r + γmaxa′ Q(s′, a′)l −Q(s, a)l]
s← s′;
if ∥ (Q(s, a)l −Q(s, a)g) ∥> θ then

Add Q(s, a)l to commsout
end if
Transmit commsout to all agents
Receive commsin from other agents
if commsin ̸= ∅ then

for all Q(s, a)g ∈ commsin do
Q(s, a) =

Q(s,a)×Expcl+Q(s,a)g×Expcg
Expcl+Expcg

end for
end if

end for
until s is terminal

5. MODEL FOR THE AUTO-SCALING OF APPLICATIONS IN CLOUDS

To facilitate agent learning for a cloud resource allocation problem one must define an appropriate
state action space formalism. The revised state action space formalism is designed specifically for
obtaining better policies within computational clouds. Our state space representation is tailored to
suit the performance related variabilities and the geographical distribution of resources. We define
the state space S as the conjunction of three state variables S = {u, v, time}.

• u is the total number of user requests observed per time period. This value varies between
time steps.
• v is the total number of virtual machines allocated to the application, where each virtual

machine instance
Vi ∈ {{t1, l1}, ...{tn, lm}}. n represents the total number of virtual machine types and m is
the total number of geographic regions. t is the virtual machine type and l is the region.
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• time is UTC time. It allows the agent to reason about possible performance related effects
such as peak time of day in a data centre in a specific region.

The agents action set A contains the set of all possible actions within the current state. The agent
can choose to add, remove or maintain the amount of virtual machines allocated to the application.
Rewards are determined based on a defined Service Level Agreement (SLA) which is related to
performance. The overall reward allocated per time step is given by the following equations.

C(a) = Cr × Va +
{ v∑

i=1

(Cr × Vi)
}

(5)

H(a) = Pc ×
{
(1 + p′−sla

sla if p′ > SLA
0 else

(6)

R(s′, a) = C(a) +H(a) (7)

Cr is the cost of the resource, this is variable depending on the type, specific configuration
and region. V represents an individual virtual machine instance, with Va representing the specific
virtual machine allocated, deallocated or maintained as a result of action a. H is the overall penalty
applied as a result of violating the specified SLA. Pc ∈ ℜ represents a defined penalty constant
incurred through violation of the SLA. The total reward R(s′, a) for choosing action a, resulting
in s′ is the combination of the cost of execution and any associated penalties. Whilst many more
state observations could be included in this model (CPU utilisation, Memory utilisation, average
response time), the approach works surprisingly well given relatively modest state information.
In fact previous allocation approaches have had comparable performance to heavily researched
open-loop queuing theoretic models, using only current demand as the single observable state
variable [28].

Reinforcement learning approaches generally suffer from curse of dimensionality problems, as
the size of the state space grows exponentially with each new state variable added. This limitation
prevents reinforcement learning techniques from handling environments consisting of very large
state and action spaces. To prove the viability of using reinforcement learning to handle application
scalability in clouds in lieu of potentially large state and action spaces we have devised a learning
architecture aimed at parallelising Q-learning in the context of auto-scaling resources.

Agent 1

(Q-learning)

Instance 

Manager

Transmit 

commsout

External Load Balancer

Incoming Requests

Agent 2

(Q-learning)

Incoming Requests

Receive 

commsin

VM1

Instance 

Manager

Agent 3

(Q-learning)

Instance 

Manager

Incoming Requests

Transmit 

commsout

Receive 

commsin

Transmit 

commsout

Receive 

commsin

VM2 VM1 VM1 VM2 VM3

Figure 4. Parallel Q-learning Architecture

Figure 4 presents a high level architecture of parallel Q-learning in a typical cloud environment.
Each agent makes its own decisions about the incoming user requests and experiences penalties and
rewards independently. Each agent’s environment is insular, this means that multiple independent
agents do not introduce non-stationarity in each others environments as a direct result of learning in
parallel. Based on the allocated numbers of requests the agent must attempt to learn an approximate
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individually optimal policy. The agents then share information regarding their observations while
operating in the environment. Each agent communicates directly with all the other agents in the
system. Actions of whether to add, remove or maintain the existing amount of allocated VMs are
executed by the instance manager based on the instructions of the learning agent.

6. EXPERIMENTAL RESULTS

In this section we examine algorithmic performance from two different perspectives. Firstly we
investigate the performance of our proposed formalism in the presence of a variable underlying
resource and workload model. Secondly we evaluate our parallel reinforcement learning approach
and examine its performance with respect to the time taken to converge to optimal policies.

6.1. Experimental Setup

We develop an experimental testbed in Matlab to evaluate our results. Unless stated in the individual
experimental sections the following parameters are applied across all experiments.

1. The user request models are generated by a workload simulator. The simulator simulates
user requests in an open-loop mode. The open-loop mode generates Poisson requests with an
adjustable mean arrival rate ranging from 10− 150 reqs/sec.

2. A Service Level Agreement (SLA) of 250 (msecs) governs the maximum allowed response
time per request. Each request exceeding this value is deemed in violation of the SLA and
incurs a penalty according to Pc = 1. The value of the penalty Pc has a direct impact on the
distance the policy maintains from the SLA.

3. Q-learning is initialised with the following parametric settings. A value of α = 0.5 for the
learning rate, ensures that the majority of the error in the estimate is backed up. The discount
factor γ = 0.85, discounts the value of future states. A value of ϵ = 0.1 was chosen, to
facilitate adequate environmental exploration. The experimental analysis of Q-learning has
the same parametric settings.

4. Four separate data centres are simulated in four disparate geographic regions, closely
emulating the data centre regions supported by Amazon’s EC2. Our simulations also emulate
EC2’s instance pricing model, where prices per VM varies between types and regions. In
our experiments we define the price of the VM as directly proportional to its configuration,
in terms of CPU, memory and disk size i.e. the greater the size of the configuration the
greater the cost. Table I in Section 3 outlines the different instance types and their associated
configurations.

5. A performance model distribution is constructed by discretising the observed benchmark
results into time steps. This allows us to model variable performance over each time step.
Taking the lowest and highest observed values per time step, a random performance sample
is generated uniformly. We assign a specific peak time in each region when performance
variability is increased across all the virtual machines instantiated within that region.

The agent’s knowledge is stored in a lookup table (Q-table) and is used to inform decisions over
the entire learning episode.

6.2. Optimising for Variable Resource Performance

This experiment analyses the proposed state action space formalism in contrast to previous work
where agents ignore resource performance variability. VMs are instantiated with respect to type and
location configurations. Learning intervals are discretised into time steps, with each lasting for 60
seconds. Each interval constitutes a decision point, where the agent chooses an action a, is presented
with a reward r and the next state s′. Throughout all the experiments the agents action set is limited
to the addition or substraction of a single virtual machine each time. Individual VMs are configured
in terms of CPU, memory and disk, however the focus of this paper is on I/O variability. A I/O
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performance model for each VM type is generated based on the observed I/O performance, through
the benchmarking of instances. The simulations carried out are based on data gathered through
benchmarking live Amazon EC2 instances as outlined in Section 2.

To analyse the benefit of the state space formalism presented in this paper over previous work
when dealing with the variabilities of the cloud, the performance of two Q-learning approaches is
evaluated. The first approach (hereafter referred to as CloudRL) reasons across both workload and
resource variability. The second approach does not reason about the variability of the resource,
instead presuming that each additional resource gives a defined performance gain based on its
configuration. We refer to this as BasicRL. The addition of the variable resource performance
model allows the agent to reason over the addition and removal of resources choosing those which
have performed better in the past. Both approaches share the same parametric settings, as outlined
in 5 above, however there are significant differences in the respective state space representation.
Firstly the BasicRL approach does not incorporate current UTC time into its state space rendering
it incapable of reasoning about the possible effects of peak time in a particular region. Secondly it
considers all virtual machines to be homogenous/region independent. This approach is consistent
with [8] previous research in cloud resource allocation and that of Grids also.

As stated in Section 4 with respect to response times per request, the value specified for Pc has a
direct impact on how closely the learned policy approximates the given SLA value. A high penalty
will encourage policies that produce lower response times, resulting in increased numbers of VMs
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Figure 5. Comparison between the CloudRL and the BasicRL approaches with respect to average costs and
average response time
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and greater execution costs. The higher overall cost created by the additional VMs is offset by
the fact that the SLA violation penalties are so high and the agent will yield a greater reward by
decreasing the probability of SLA violation. A low value for Pc will result in greater numbers
of SLA violations but the relatively low penalty applied encourages policies that more closely
approximate the given SLA, resulting in lower costs. The objective of each approach is to choose
resources which facilitate the combined goals of cost reduction and maintain the SLA.

Figure 5a demonstrates the performance comparison between CloudRL and BasicRL with respect
to average response time. The CloudRL approach has a higher average response time per request,
standing roughly at 160 (msecs) at convergence, however it is still considerably below the SLA
of 250 (msecs). BasicRL is unable to reason about the geographical region or type of the virtual
machines deployed. This results in a greater probability of choosing suboptimal resources for a given
time period. As a result its policy opts to maintain a much higher number of allocated resources to
the application. Hence it has a lower response time than the CloudRL approach, but incurs higher
average costs as it has more resources allocated to the application, as is depicted in Figure 5b. The
multi-criteria Q-learning approach maintains on average a 47% cost saving over the single-criteria
approach, in the simulated cloud environment.

6.3. Adjustable Mean Inter-Arrival Rates

This experiment analyses the performance of Q-learning as the mean-arrival rate parameter λ is
adjusted. The performance is compared against a user request model of fixed mean. The fixed
workload request model consists of a Poisson distribution with a mean-arrival rate of 20 (reqs/sec).
Each VM has a theoretical throughput in the range of 1− 10 (reqs/sec) which varies per time step
in accordance with the resource performance model.

Figure 6 plots the average number of VMs allocated each time step. The fixed workload (λ = 20)
quickly converges to the optimal allocation of VMs. The plot showing the adjustable inter-arrival
rates demonstrates the adaptability of the approach as workloads change. Every 2000 time steps the
mean arrival rate is increased. After 2000 time steps the workload switches from 40 to 60 (reqs/sec).
Figure 6 clearly demonstrates the speed at which the approach can determine the appropriate amount
of resources to allocate given the change in the mean number of user requests. Whilst initially it
takes time to converge, once an initial policy has been found the approach converges much faster
to subsequent model changes as it has already gained experience from previous time steps. After
4000 time steps the average request arrival-rate (λ) shifts again to 120 (reqs/sec). The approach takes
greater time to converge to the larger request model. This due to its limited experience of the newly
observed states and the greater resource fluctuations as a result of the larger numbers of allocated
VMs.
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6.4. Agents Learning in Parallel

One of the challenges faced when dealing with real world problems with large state spaces is
the time it takes to converge to an optimal policy. Usually a substantial number of state visits
are required to asymptotically converge to Qπ(s, a), however in reality often good policies can
be determined with far fewer visits. In many real world problems this level of performance is
unacceptable. In an auto-scaling context this would potentially lead to expensive allocations in the
learning phase that would inhibit the commercial viability of the approach. In order to improve
the length of time it takes to converge to an optimal policy we examine the novel parallel learning
approach for improving convergence times through the sharing of Q-value estimates.

Whilst each agent attempts to optimise allocations for their respective numbers of user requests,
they will encounter similar states. By sharing estimates of the values of these states amongst each
other, they can reduce the length of time it takes to learn an optimal policy. The stochastic nature
of the workload request model ensures each agent will have a different learning experience but they
will all converge on the same result. The goal of this experiment is to speed up the time it takes to
converge to a given policy. In order to facilitate a strict analysis of the parallel learning performance,
we homogenise the VMs allocated to the application with respect to location and performance. For
simplicity and analysis, the throughput of each VM is set to the maximum of 10 (reqs/sec). Figure 7a
plots the average distance between Q-function estimates as the number of parallel agents is increased
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from 2 to 10 agents. The graph depicts the average distance between agents’ approximation of the
value of Q(s, a). The graph shows the reduction in the time it takes to converge as the number of
agents is increased. Figure 7b shows the resulting performance of 5 agents learning in parallel where
the request mean inter-arrival rates are adjusted every 2000 time steps. For the first 2000 time steps
the inter-arrival rate parameter is equal to 50 (reqs/sec). With this setting the initial convergence to
the average optimal allocation of VMs per time step takes about 80 timesteps. If you compare this
to the single agent learning in Figure 6 albeit with a variable performance model, the convergence
time as a result of learning in parallel has dropped significantly. As the rate parameter is shifted to
100 and 150 (reqs/sec) at 2000 and 4000 time steps respectively the time taken to converge is also
dramatically reduced as a result of both the combination of prior knowledge and learning in parallel.

7. CONCLUSIONS & FUTURE WORK

Reinforcement learning techniques have been successfully applied to automated control problems
across a range of domains including economics, multi-agent systems and grid computing. Utilising
reinforcement learning techniques to automatically control the scaling of virtual resources in
supporting applications offers advantages with respect to reliability, adaptability and autonomy.
Threshold based approaches have predominated industry scaling solutions such as Amazon Auto
Scaling and RightScale. However the development of effective thresholds which govern allocation
decisions requires extensive domain and application knowledge. Relying only on environmental
observations the agent learner can adjust its behaviour over time in respect of changes in workload
models and resource variability. This work presents a novel reinforcement learning approach aimed
at optimising resource allocation decisions to support application scalability in cloud computing
environments. Whilst relatively simple, our novel state action space formalism is capable of
guiding a Q-learning based agent towards good VM allocation policies in IaaS clouds with no
prior experience. Coupled with variable numbers of user requests and resource performance it
can effective reason about multiple virtual machine types dynamically dealing with temporal
performance issues. To deal with the curse of dimensionality often associated with real world
learning problems this work also presents a parallel reinforcement learning approach which is
capable of reducing the time taken to converge to optimal resource allocation policies. Each learning
agent attempts to approximate optimal policies based on its experience. Through the sharing of
information with other agents the time taken to converge to a stable policy is greatly reduced.
The combination of parallel agent learning with our novel state space solution enables advanced
uncertainty reasoning capabilities over cloud resources.

In the future we wish to integrate the approach into a live virtualised test-bed environment
to evaluate performance outside the simulated environment. We are currently developing a
hybrid cloud test-bed utilising OpenStack to manage both the internal hardware virtualisation
and public cloud resources. The reinforcement learning approach will be evaluated by deploying
a standard benchmark application such as Apache Olio and comparing performance against
traditional scalability mechanisms. Whilst approaches to support application scalability have
generally involved allocating resources in an effort to support a performance related objective such
as application response time, we feel that a more high level approach will be needed to address
proper application scalability in a cloud context. In this light we plan to combine the holistic
approaches specified by Rodero-Merino et al. [16] and extended by Morn et al. [17] allow for the
specification of higher level business functions in conjunction with learning.
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