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Abstract 

Critical limb ischemia (CLI) is severe impairment of the microcirculation resulting in 

inflammation, ischaemic pain, non-healing ulcers and gangrene. Over 20% of patients 

have no option but to undergo a major limb amputation. Therefore, the need to develop 

new therapies is urgent. To this end, there are three important aspects to be taken in 

account: 1) to have a preclinical model that would mimic as closely as possible the 

pathological events associated to CLI; 2) to understand the molecular basis of the 

pathological events, 3) to provide extracellular matrix inputs to the damaged tissue to 

stimulate the formation of new blood vessels.  

In the light of these considerations, this thesis has contributed to the field with a 

multidisciplinary approach. Firstly, a severe model of CLI was established and 

characterized in a wildtype mouse. The blood-flow recovery was severely impaired and 

histopathological features associated with ischemia - necrosis, inflammation, and 

spontaneous angiogenic response -were present. Secondly, this model was adopted to 

study the glycoenvironment modifications provoked by the ischemic insult. Among the 

biomolecules involved in the ischemic regeneration, glycans remain the least explored, 

despite their critical functional and structural roles. Although the role of glycans in 

mediating these pathological events has been reported, changes in the glycosignature 

following muscle ischemia remains poorly understood. Distinctive N-glycosylation 

modifications- increase of mannosidic species, alteration of sialylation type balance and 

reduction of hybrid and bisected glycans were identified. These modifications identified 

can serve as molecular targets and used when designing new therapeutic strategies. 

Finally, an Elastin-like hydrogel was tested for its potential modulation of the post-

ischemic remodelling. Elastin is a natural protein present in the ECM that regulates 

specific cell pathways and mediates cell activities such as differentiation. Recently, 

Elastin-like recombinamers (ELRs) have demonstrated an angiogenic potential both in 

vitro and in vivo. The administration of an elastin-like recombinamers (ELRs) hydrogel 

was able to stimulate angiogenesis in a severe model of CLI. The hydrogel also induced 

the remodelling of ECM components towards the healthy state. N-glycosylation 

modulation were reported which suggested, in particular, the role of mannosylation and 

sialylation in mediating the healing effect.  



 xxxi   
 

This study suggests that the ELRs hydrogel is a promising clinical candidate for the 

treatment of CLI, and identifies glycosylation alterations as potential new therapeutic 

targets. 

 

 Critical Limb Ischemia (CLI) is a severe blockage of the blood vessels which markedly 

reduces blood flow to the legs and has progressed to the point of severe pain and even 

skin ulcers or sores. In this thesis, an animal model of CLI was developed and 

charcterized.  This model has been used in the analysis of the sugar signature in ischemic 

tissues in the limb. The elastin-like recombinamer (ELR) hydrogel was also tested using 

the model and was shown to have a positive effect on the development of blood new 

blood vessels of the ischemic limb. The sugar studies were useful to gain a deep insight 

of the molecular mechanisms occurring at the different stages of the ischemia-reperfusion 

process and the effect of the ELR hydrogel.  
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1 Introduction  

1.1 Peripheral Arterial Disease 

Cardiovascular disease (CVD) has long been the leading cause of death worldwide. In 

2013, CVD accounted for 31% of all deaths, representing a 41.7% increase since 1990. 

Among the conditions classified as CVD, myocardial infarction (MI) and peripheral 

artery disease (PAD) are associated with significant morbidity and mortality. In the 

United States alone, approximately 8.5 million individuals are afflicted by PAD, and an 

estimated 660.000 individuals experience a new MI and 305.000 have recurrent MI 

annually [1-4]. 

Peripheral arterial diseases (PADs) are a subcategory of CVD that is characterized by the 

obstruction of blood flow in non-cardiac, non-intracranial arteries, most frequently as a 

consequence of atherosclerosis. The atherosclerotic lesion results from a chronic 

inflammatory process that starts with the deposition of fatty acids, cholesterol, fibrin and 

cellular waste debris in the intimal layer of the artery. The subsequent accumulation of 

monocytes and macrophages which is involved in the formation of a necrotic plaque 

causes the arterial wall rupture. Once the plaque is exposed to the bloodstream, it has a 

high potential to cause occlusion of the blood circulation (Figure 1. 1) [5, 6]. The blood 

flow blockage leads to deprivation of oxygen and nutrients, resulting in inflammation and 

tissue necrosis. Other causes associated with PADs are embolism, thrombus formation, 

vasculitis or other non-inflammatory arteriopathies while common risk factors are 

hypertension, smoking, sedentary life-style, diabetes, high cholesterol and old age [7]. 

1.1.1 Critical Limb Ischemia  (CLI)  

Critical limb ischemia (CLI) is a manifestation of PAD that occurs with the occlusion of 

arteries of the lower extremities [8]. With an estimated yearly incidence of 500 to 1000 

new cases per million individuals in Western society, it is ever increasing in concert with 

the increase in cardiovascular risk factors: CLI also imposes a substantial burden on 

patients, healthcare providers, and resources [9]. Mortality rates as high as 20% within 

six months of diagnosis and exceeding 50% at five years have been reported for CLI, 

whereas oneȤyear mortality rates in non-revascularizable, soȤcalled ñnoȤoption CLI 

patientsò range from 20% to 40%. 
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The symptoms of CLI patients are pain at rest, intermittent claudication in the early 

stages, non-healing ulcers and gangrene at the later stages. The Fontaine score is used in 

classifying the severity of CLI in clinical stages. The stages range from the first 

asymptomatic stage, through the intermittent claudication stage to the final stage: pain at 

rest, ulceration and gangrene (Table 1. 1). 

1.1.2 Clinical M anagement and Current Treatment for CLI  

In addition to pain relief and wound healing, CLI treatments aim at obtaining 

revascularization of the lower limb. Simultaneous treatments are often required for the 

control of cardiovascular risk factors and glycemia. Revascularization strategies currently 

in use involve surgical intervention through endovascular techniques or bypass (Figure 

1.1). Factors such as the extent of the lesion, comorbidities, the presence of multiple 

arteries occlusion and  the presence of foot ulcer determine the decision towards a certain 

procedure [10].  

Endovascular procedures aim at removing the occlusion by opening the artery and are 

considered minimally invasive. Endovascular procedures are implemented when the 

arterial occlusion occurs under the groin area. In general, these are performed with a 

puncture of the groin that allows access to the arterial segment of interest, under local 

anaesthesia. Some of the endovascular procedures include: 

ω Angioplasty, the insertion a small balloon in the artery. The balloon is inflated using 

a saline solution to liberate the artery. 

ω Cryoplasty, the balloon is inflated using nitrous oxide that freezes the plaque, 

arresting its growth and generating minimal scar tissue. 

ω Stents, metal mesh tubes that act as scaffolds that are inserted in the artery and left 

in place. Stents can be self-expanding when they open upon release or balloon-

expanded when an angioplasty balloon is used to open them. 

ω Laser atherectomy, where the plaque is treated with a laser probe. 

ω Directional atherectomy, the occlusion is physically removed using a rotating cutting 

blade introduced with a catheter. 

If the arterial occlusion is not suitable for endovascular procedures, patients are treated 

with bypass surgery. Bypass is a segment of a vein from a patient or an external graft that 

is attached laterally to the occluded portion to ensure that the blood flow will bypass it.  



Introduction 
 

 4   
 

 

 

 

 

 

 

 

Stage I No symptoms 

Stage II Intermittent claudication 

Stage IIa Without pain on resting, but with claudication at a distance greater than 

200 metres 

Stage IIb 

 

Without pain on resting, but with a claudication distance less than 200 

metres 

Stage III Nocturnal and / or resting pain 

Stage IV Necrosis (death of tissue) and/ or gangrene in the limb 

Table 1. 1: Fontaine classification of CLI stages. 
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Bypass interventions are mainly used in patients presenting healthy autologous vascular 

grafts. Both endovascular procedures and bypass surgeries are indicated if the patient is 

effected by a major localized occlusion. However, ñno option patientsò are those with 

multiple co-morbidities and occlusions in smaller arteries and therefore are not eligible 

or fail revascularization, and will undergo primary limb amputation [1]. Therefore the 

development of a new treatment to address this clinical need is urgently required. 

1.1.3 Pathophysiology of CLI 

The pathophysiology of CLI, caused by the reduction of blood supply, leads to a complex 

pathophysiological scenario involving hypoxia, oxidative stress, macro- and 

microvascular dysfunctions, inflammation and muscle fiber degeneration. Progressive 

alterations not only involve the skeletal muscle but also skin, bone and nerves [11, 12]. 

The skeletal muscle is the tissue most vulnerable to the ischemic insult as, within an 

interval of two hours, the muscle vasculature is severely impaired and, after six hours, the 

damage to the muscle fibers is irreversible [13]. The consequent muscle degeneration 

starts with disruption of the myofiber sarcolemma, followed by an increase in 

permeability that leads to cell death and necrosis. The breakdown products of the muscle 

fiber initiate the inflammatory response at the interface between the dead and damaged 

muscles (Figure 1. 1). 

Specifically, circulating inflammatory cells such as neutrophils and macrophages are 

activated and recruited at the site of the injury where they phagocytose cells debris. 

Inflammatory cell infiltration and fiber necrosis represent the major histopathological 

features associated with muscle degeneration following ischemia. Another feature is the 

occurrence of arteriogenesis and angiogenesis as a response to the ischemic insult [14, 

15]. However, the spontaneous vessel growth reaction remains inadequate to provide 

sufficient blood perfusion to the ischemic limb. In fact, the ischemic environment alters 

the structure and the function of endothelial cells which are crucial in maintaining the 

integrity and stability of the blood vessel [14, 16]. Endothelial cell dysfunction can cause 

abnormal activation of platelets and leukocyte adhesion which contributes toward 

formation of microthrombi within the sprouting capillaries. Nutrients and oxygen 

exchange is impaired at capillary level, and this contributes to their destabilization. 
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Figure 1. 1 Schematic representation of the pathological scenario of CLI and the 

current treatments. CLI arises when occlusion of arteries of the lower limb occurs, 

mostly probably due to the formation of the atherosclerotic plaque in the arterial wall. 

The resulting reduction in blood flow and the consequent lack of oxygen and nutrients 

cause the necrosis of skeletal muscle. The damaged muscle fibers present inflammatory 

cell infiltration at the necrotic segments. The damage triggers the differentiation of the 

satellite cells, present in the intact segments, into myoblasts that starts a responsive 

regeneration process. Current treatments are based on revascularization strategies 

involving surgical intervention through bypass or endovascular techniques (stents and 

balloons). 
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1.1.3.1 Inflammation in CLI  

Inflammation is one of the most prominent pathological events in CLI [17]. Inflammation 

is a fundamental pathological process that occurs in response to an injury that can be 

caused by a physical, chemical, or biological agent. It generally involves a complex series 

of cellular and molecular reactions that starts in blood vessels and continue in tissues at 

the injury site [18]. Thus inflammatory response is characterized by an infiltration of 

lymphocytes, mononuclear cells/macrophages, and granulocytes into the injured tissue 

and by the secretion of various pro-inflammatory cytokines that orchestrate the 

inflammatory process. Key regulators of the process are the cellular adhesion molecules 

(CAMs) that are present both on the endothelial cells wall and also on the membrane of 

the inflammatory cells. Among CAMs, selectins and integrins are the major protagonists 

of this interaction and are well established markers of inflammation.  

In CLI, the inflammatory response is triggered by the damage to skeletal fibers  and their 

degradation products attract in situ phagocytes [13]. The hypoxic environment also 

contributes to generate and sustain the inflammatory response [19]. The absence of 

oxygen activates the hypoxia-inducible factors (HIFs) gene expression which is one of 

the major regulators of several aspects of inflammation including the modulation of 

myeloid cell activities [20].   

Specifically, HIF-1Ŭ promotes the motility, recruitment and aggregation of myeloid cells 

in inflamed tissues by increasing the generation of ATP and also inhibits apoptosis of 

neutrophils, prolonging their survival [21, 22]. Furthermore, HIF-1Ŭ coordinates the 

induction of toll-like receptors (TLRs) signalling which amplifies the nuclear factor əB 

(NF-əB) pathway that plays a central role in the generation of an inflammatory response. 

Indeed, NF-əB pathway can promote phagocytosis, leukocyte recruitment, and adaptive 

immunity [23] and can also determine the secretion of pro-inflammatory cytokines such 

as tumor necrosis factor alpha (TNF-Ŭ), or interferon (IFN)-ɔ and chemokines such as 

interleukin (IL)-8, monocyte chemo-attractant protein (MCP)-1, potentiating the 

inflammatory reaction [24]. Other pro-inflammatory cytokines such as interleukins IL-1, 

IL-6 are secreted and are considered to be markers of CLI [25-28]. All these cytokines 

are part of the ischemic inflammasome and everyone of them has a specific role in 

mediating the events occurring in the ischemic-induced inflammation [27, 28].  
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TNF-Ŭ has been extensively characterized for its pro-inflammatory nature in in vivo models 

of disease and in in vitro models of inflammatory tissue injury [29-32]. TNF-Ŭ is a key 

cytokine which mediates several inflammatory events both in myocardial and limb 

ischemic tissue. TNF-Ŭ is responsible for leukocyte adhesion to the endothelium through 

upregulating the expression of adhesion molecules such as selectins and CAMs and also 

through increasing vascular permeability that facilitates blood cell extravasation [29-32]. 

High levels of TNF-Ŭ have been observed in tissue and serum in CLI patients [26, 28, 

33]. 

IL-1 is another pro-inflammatory cytokine, secreted by mononuclear cells, that acts in 

upregulating neutrophil adhesion molecules on the endothelium and also stimulates the 

proliferation of macrophages, neutrophils, lymphocytes B and T [34]. IL-1 also induces 

the synthesis of nitric oxide synthase (NOS), an important inflammatory mediator. As a 

result of these events, inflammation is increased. IL-1 has been shown to be a marker of 

the PAD pathological progression [35].  

IL-6 is another inflammatory cytokine found upregulated in CLI patients and considered 

to be a reliable prognosis predictor [27]. IL-6 is synthesized by several cells including the 

inflammatory infiltrating repertoire, fibroblast and endothelial cells. IL-6 exhibits its pro-

inflammatory function through several processes: for example, it stimulates the 

production of other cytokines like MCP-1 and IL-8 by macrophages and endothelial cells 

[36]. IL-6 stimulates the secretion of the so-called acute-phase proteins C-reactive protein 

(CRP), fibrinogen production, the release of complement factors and the production of 

serum amyloid A [37, 38].  

Other important molecules that have been found as CLI markers and indicators of disease 

progression are the matrix metalloproteinases (MMPs). All of these mediators have an 

important role during the inflammatory process and the tissue remodelling phase that 

occur during ischemic disease [39].   

MMPs is a family of enzymes that are responsible for the proteolysis of many 

extracellular matrix (ECM) components including collagen, fibronectin and laminin [40]. 

During the inflammatory process, MMPs are released by various inflammatory cells such 

as, leukocytes and macrophages, and the consequent ECM degradation facilitates their 

invasion [41]. 
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CAMs are crucial in mediating the leukocyte recruitment at the injured site. This process 

is initiated by selectins. Among CAMs, selectins have been detected to be increased in 

the plasma of patients with PADs and are recognized as markers of the disease [42]. 

Selectins are adhesion molecules present both on the endothelium and on several blood 

cells such as granulocytes, monocytes and lymphocytes [43]. Selectins mediate leukocyte 

recruitment, specifically during the initial steps of capture and subsequent rolling on the 

endothelial wall [44, 45]. The selectins on the endothelial cells are not expressed in 

healthy conditions while, during inflammation, inflammatory cytokines such as TNF-Ŭ 

and IL-1ɓ stimulate their transcription and their presentation on the luminal endothelial 

cell membrane [46-48]. Therefore, selectins are important players in exacerbating the 

pathological context of ischemia. 

The inflammation process during ischemia is complex and a deeper understanding of the 

intricate interactions and connections between the variety of cellular and molecular 

players involved is essential for the clinical purpose of down- regulating inflammation in 

CLI ischemia patients.  

1.1.3.2 Angiogenesis and Vascular Dysfunction in CLI  

Angiogenesis, the development of new blood vessels from existing capillaries, is marked 

by the migration of dormant endothelial cells that get interconnected by VE-cadherin to 

form sprouting tubes that become covered by pericytes [49]. The angiogenic process is 

finely regulated by a variety of molecules including pro-angionic cytokines such as 

vascular endothelial growth factors A (VEGFA), fibroblast growth factors (FGFs): FGF1 

and FGF2, angiopoietin (ANG)-1, and platelet- derived growth factor (PDGF) and 

adhesion molecules such as integrins Ŭvɓ3, Ŭ5ɓ1 [49, 50]. After the ischemic injury, the 

body tries to compensate for the reduction of blood supply by inducing angiogenesis and 

vascular remodelling [15, 51].  

The mechanisms that regulate the ischemia-induced angiogenic response are several and 

they are influenced by the ischemic pathological context that includes hypoxia, oxidative 

stress, inflammation and the alteration in hemodynamic forces in the capillaries [52, 53]. 

One of the best-known molecular mechanisms behind the ischemia-induced blood vessel 

growth is triggered by the lack of oxygen and involves the up-regulation of HIF-1 and 

HIF-2. The latter growth factors induce the expression of genes encoding for angiogenic 
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growth factors including vascular endothelial growth factors A (VEGFA), its receptor 

VEGFR1, nitric oxide (NO), and erythropoietin (EPO), stroma-derived factor 1 (SDF-1), 

ANG-2, platelet-derived growth factor (PDGF-BB), and stem cell factor (SCF) [54-57]. 

Furthermore, other proangiogenic factors upregulated by the hypoxic stimulus via NF-əB 

pathway are IL-6, cyclooxygenase (COX)-2, TNF-Ŭ, macrophage inflammatory protein 

2 (MIP-2), intercellular adhesion molecule (ICAM), vascular cell adhesion molecule 

(VCAM), IL -8, chemokine (C-Cmotif) ligand 5 (CCL5) and inducible nitric oxide 

synthase (iNOS) [53]. 

Several other important mechanisms involve the various types of inflammatory cells that 

accumulate at the ischemic tissue where they are active in mediating vascular remodelling 

in CLI [20]. In particular, the myeloid cells such as monocytes and macrophages are well-

documented as influencing the sprouting of new blood vessels during inflammation in 

many ways. Monocytes and macrophages can both act in a paracrine manner, secreting 

pro-angiogenic growth factors and can also cause the degradation of the ECM upon 

secretion of MMPs and other proteolytic enzymes. This event allows endothelial cell 

migration to form new capillaries. 

In particular, monocytes are able to induce angiogenesis with a paracrine secretion of pro-

angiogenic growth factors such as bFGF and VEGF family [20]. Monocytes also release 

MMP-9 that mediates the formation of new capillary branches [58].  

Macrophages also favour the formation of new capillaries, promoting the fusion of 

endothelial cells [59]. Macrophages are broadly divided into two subpopulations: M1 

with pro-inflammatory properties, and M2 that exhibit anti-inflammatory effects, 

promoting tissue repair [60]. These two subpopulations are not absolute but a spectrum 

of phenotypes. Generally, M1 and M2 macrophages have opposite effects on the 

angiogenenic process. M1 macrophages have a negative influence on angiogenesis since 

they impede proliferation of the endothelial cells [61], while M2 macrophages can 

enhance the secretion of  the angiogenic factor FGF [62].  

Another mechanism that contributes in the ischemia-induced angiogenesis involves the 

shear stress that has a specific role in collateral remodelling [63-66]. Indeed, the reduction 

of blood flow determines changes in the hemodynamic forces (pressure and flow rate) 

occurring in collateral vessels. The increase of shear stress is sensed by the integrins on 
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endothelial cells, activating cytoskeleton remodelling. In particular, Ŭvɓ3 integrins were 

found to be increased on collateral endothelium, immediately after ischemia [64]. The 

mechanotransduction through integrins leads to the transcription of ANG-1 [63], an 

important pro-angiogenic growth factor, and also activates Rho kinase signalling [66]. 

RhoA specifically modulates expanding collateral vessels by regulating actin-

cytoskeleton movements, in the endothelial and smooth muscle cells [65, 66].  

Despite these mechanisms of compensation, the spontaneous angiogenic response is not 

able to re-establish an adequate revascularization and blood supply to the ischemic tissue.   

The reason for this is that ischemia causes dramatic vasculature dysfunction [67]. One of 

the mechanisms behind this dysfunction involves TNF-Ŭ signalling which destabilizes 

adherens junctions and consequently increases the endothelial permeability [68]. 

Specifically, this occurs through the reduction of the expression of vascular endothelial-

cadherin, key components of the junctions and the increase in generation of mitochondrial 

reactive oxygen species (ROS) in endothelial cells [69-71].   

Indeed, in CLI patients, arterioles are vasodilated and tend to be unresponsive to stimuli, 

with a consequent formation of oedema [16]. Arterioles that present oedema compromise 

the supply of oxygen and nutrients to capillaries and contribute to their destabilization. 

Endothelial cell dysfunction can also cause abnormal activation of leukocyte and platelets 

and contribute towards the formation of microthrombi within the forming capillaries.  

Therefore further investigation of these mechanisms is urgently required to design a 

therapy that can potentiate the innate angiogenic response to reach clinical efficacy. 

1.1.3.3 Skeletal Muscle Damage and Regeneration in CLI  

The skeletal muscle is a tissue that is most vulnerable to the ischemia reperfusion damage. 

The alterations reported in the skeletal muscle of CLI patients include muscle fiber 

apoptosis, atrophy, necrosis and the switching from oxidative type I to glycolytic type II 

fibers [13]. Furthermore, muscle fibers undergo denervation, mitochondrial DNA damage 

and aberrant myosin heavy chain production [72-74]. Several molecular and cellular 

mechanisms are involved in these pathological events. Specifically, hypoxia, oxidative 

stress and the inflammatory environment play a key role in the mechanisms that lead to 

muscle damage.  
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Hypoxia is a stimulus that induces an increase of TLRs on both immune and non-immune 

cells. TLRs are well-known key regulators of apoptosis and play a large part in ischemia-

induced cell damage [75]. In the skeletal muscle TLRs 1ï9 isoforms are present [75, 76]. 

TLRs 2, 4, 6, 8, and 9 have been shown to be upregulated in response to freeze-induced 

skeletal muscle damage. Furthermore, TLRs 2, 4, and 6 have been found upregulated in 

muscle biopsies obtained from patients with CLI [76]. 

Besides activating the extrinsic apoptosis pathway, the activation of TLRs triggers the 

release of various pro-inflammatory cytokines including TNF-Ŭ, IL-6 [76]. In particular, 

the latter inflammatory cytokines not only regulate the inflammatory cells but are also 

involved in mediating in the skeletal muscle damage. It has been reported that TNF-Ŭ and 

IL-6 levels are increased in CLI. These factors induce skeletal muscle proteolysis and 

correlate with the decreased strength of muscle mass in elderly patients [77-79]. 

Furthermore, TNF-Ŭ has been observed to induce apoptosis of myocytes [80]. Other 

inflammatory markers that have been reported to be high in CLI patients, such as (CRP, 

IL-6, and VCAM-1), were correlated with a shrunken calf [25]. In addition,  IL-6 and 

soluble VCAM-1 were associated with the deposition of adipose tissue in the calf muscle 

of rats [17]. This evidence suggests the role of the inflammatory response in sustaining 

and exacerbating the initial muscle damage caused by the ischemic insult.  

Another mechanism involved in the skeletal loss is that of oxidative stress. ROS generated 

during ischemia [24, 72, 81] represent another factor able to induce the secretion of TNF-

Ŭ by an activation of p38 mitogen activated kinase (MAPK), and therefore contributes to 

the TNF-Ŭ dependent apoptosis [82, 83]. Additionally, the ROS species can cause an 

intracytosolic accumulation of Ca2+ that consequently leads to the production of calcium 

pyrophosphate complexes and the formation of uric acid that contributes to DNA damage 

and disruption to the cell membrane [84, 85]. 

While recent advances in regenerative medicine aimed at stimulating angiogenesis have 

made progress, little is known about the degeneration of the skeletal muscle in CLI [86-

88]. Therefore, further investigation of the mechanism of tissue damage-regeneration in 

the ischemic muscles is needed to identify therapeutic targets that are able to induce and 

potentiate the regeneration of the muscle fibers. 
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It is well documented that the skeletal muscle is able to build up a spontaneous 

regeneration response due to the presence of the resident muscle stem cells, also known 

as satellite cells [89, 90]. In a healthy muscle, Pax7+ satellite cells are in a quiescent state 

and localized in the basal lamina adjacent to the sarcolemma of the myofibers. After 

injury, satellite cells re-enter the cell cycle and differentiate into the committed progenitor 

myocytes that proliferate and fuse with each other or to existing damaged fibers to repair 

their structure and restore their function. A part of them also undergoes symmetric self-

renewal to replenish the original stem cell pool in the muscle [91]. The fusion of myocytes 

results in the formation of central nucleated fibers (CNFs) which have nuclei in the centre 

of the cytoplasm, and are generally recognized as regenerated myofibers [92, 93]. The 

presence and the activation of satellite cells and CNFs have been documented in the 

ischemic muscle of rat and mouse models [94, 95], suggesting that the ischemic insult 

can trigger a regenerative response.  

In the healthy adult human muscle, the majority of satellite cells is localized in close 

proximity to capillaries and there is a correlation between the amount of capillaries in 

myofibers and the total number of satellite cells [96]. Furthermore, endothelial cells 

secrete ANG-1 that has been reported to regulate satellite cell behaviour, increasing self-

renewal [97]. These observations suggest that there is a paracrine cross-talk between 

endothelial and satellite cells and that capillaries are a fundamental element of the satellite 

stem cell niche.  

Further insights into the mechanism that activates satellite cells and the interaction with 

their microenvironment occurring in the ischemic limb are needed. Indeed, to address the 

problem of the ischemic muscle damage is a clinical priority, since the muscle represents 

a source of growth factors and mechanical support to the sprouting new blood vessels. 

Equally important, the muscle loss is also thought to be one of the reasons for the 

inefficacy of the current revascularization therapies. 

1.1.4 The Importance of Glycosylation in the Regulation of Molecular Mechanisms 

Understanding the molecular mechanisms underlying the pathological processes of 

diseases is crucial in designing new efficient therapies. For this purpose, an interest in 

studying glycans has grown recently in the scientific community [98]. Glycans are 

biomolecules that highly enrich the cell membrane and the ECM of eukaryotes and they 
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have a crucial role in fine-regulating the complex network of cellular events such as cell 

adhesion, proliferation and differentiation [99]. Their role is fundamental in physiological 

conditions and several glycan alterations also occur in a number of pathological processes 

from genetic diseases to cancer, suggesting that these molecules are important in 

mediating pathological events [100-102]. 

1.1.4.1 Glycosylation and its Complexity  

Glycosylation is a complex post-translational modification (PTM) that allows the 

attachment of glycans to proteins, lipids and other saccharides, and regulates their 

functions [99, 103]. The mammalian glycome has a wide structural heterogeneity and 

variety that results from the combinatorial expression of more than 200 

glycosyltransferase and glycosidase enzymes involved in the synthesis and the 

remodelling [103]. Biosynthesis is not template-driven but regulated by many factors 

including the availability of nucleotide donors and the expression of enzymes [104]. 

Structural diversity of glycans is due to the number and sequences of monosaccharide 

units and to anomeric configuration, position, and differential branching of 

monosaccharides. Additionally, glycan chains have other common modifications: 

derivatization of hydroxyls or amino groups, acylation, sulphation, methylation, and 

phosphorylation [104]. The glycome is dynamic and changes in response to intracellular 

and extracellular signals [102].  

1.1.4.2 The Main Mammalian Glycan Species 

Figure1. 2 illustrates the main mammalian glycan categories: O-glycans, N-glycans, 

GAGs, glycosphingolipids (GSLs), and glycosylphosphatidylinositol (GPI) anchor. O-

glycans and N-glycans are branched and/or linear structures that mainly enrich the 

glycocalyx. N-glycans are linked to asparagine through an N-acetylglucosamine 

(GlcNac) while O-glycans are usually attached to threonine, serine or tyrosine through 

N-acetylgalactosamine (GalNac) and in some cases through mannose (Man) and fucose 

(Fuc) [99, 103]. Both O-glycans and N-branched structures can be highly complex, and 

the addition of branching and terminal sugars is characterized by tissue- or cell lineageï

specificity [99, 105]. In contrast, glycosaminoglycans (GAGs) are linear structures, 

sulphated, negatively charged polysaccharides that enrich the ECM. GAGs are composed 

of disaccharide repeating units: an uronic acid (D-glucoronic acid (D-GlcA) or L-iduronic 

https://www.google.it/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwj9sePH5_nKAhVBaRQKHexBDI0QFggpMAE&url=https%3A%2F%2Fwww.allacronyms.com%2F_medical%2FD-GLCA%2FD-glucuronic_acid&usg=AFQjCNEJEtFYQVIYPkw_cYZBpfcXXs1I0A&sig2=lJ2EQxYTVsUCjJrOJlvE5w&bvm=bv.114195076,d.bGs
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acid (IdoA)) and an amino sugar (D-galactosamine (D-GalN) or D-glucosamine (D-

GlcN). GAGs are divided into non-sulphated, the hyaluronic acid (HA) and sulphated: 

chondroitin sulphate (CS), dermatan sulphate (DS), keratan sulphate (KS), heparin (HP) 

and heparan sulphate (HS) [106]. All these GAGs species are linked to proteins through 

a covalent bond to threonine/serine, forming a class of glycoproteins named 

proteoglycans (PGs). The exception is HA which is the only GAG not attached to 

proteins. GSLs are molecules composed of a core of ɓ-linked glucose or galactose 

associated with the ceramide molecule. The initial core can undergo additional extension 

and modification. The GPI anchor is a PTM that anchors the modified protein in the outer 

leaflet of the cell membrane. The GPI is a complex PTM of protein in the outer layer of 

the membrane constituted by a phospholipid molecule, a glycan core and a 

phosphoethanolamine (Etn-P) linker [106]. 

All glycans have a constant core structure that can be modified by the addition of different 

residues at the distant positions. The terminal modifications are usually expressed in a 

lineage-specific manner, while the core structures are conserved in many cell lineages 

and tissue types [99]. The terminals of N-glycans and O-glycans can be modified by 

sialylation, fucosylation, and mannosylation, while GAGs are mainly modified by 

sulphation.  

¶ Sialic acids are negatively charged glycan units, usually present at the terminal end 

of sugar structures [107]. Sialylation is represented by sialic acid in Ŭ-(2, 3)-, Ŭ-(2, 

6)-, or Ŭ-(2, 8)- linkage to a variety of underlying glycan precursors in mammals. 

The enzymes responsible for these modification are isoforms of sialyltransferases 

specific for the linkage.  

¶ Mannosylation of glycans is characterized by Ŭ-(1, 2)-, Ŭ-(1, 3)-, Ŭ-(1, 6) -linked 

mannose residues that can form branched structures called a high mannose type 

attached to the N-glycan core structure. Mannose is also found in one of the 

structures of O-glycans (Figure 1. 2). 

¶ Fucosylation of glycans is characterized by Ŭ-(1, 2)-, Ŭ (1, 3)-, and Ŭ-(1, 4)-linked 

Fuc to linkages terminal and subterminal substituents of N-, O-, and lipid linked 

glycans.  

¶ Glycan sulphation is a characteristic of the GAGs; however, it is also found among 

other classes of glycans. At least 30 sulphotransferases are responsible for glycan 
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sulphation by utilising 3ô-phosphoadenosine 5ô- phosphosulphate as a sulphate 

donor from the environment. This provides a wide variety in glycan sulphation 

patterns. 

1.1.4.3 Glycan Biological Functions 

Substantially, glycans can influence protein structure and function, establishing 

intramolecular and intermolecular interactions [105]. Glycans present on proteins can 

stabilize their structure: they act as a shield, protecting the protein surface from the action 

of proteases and preventing aspecific protein-protein interactions [105]. Glycosylation 

also affects the conformation of receptors, their folding, the intracellular trafficking, the 

localization on cell membranes, and the rate of degradation [105, 108]. Glycosylation is 

crucial as well in determining the binding affinity with antigens, cell surface 

proteins/receptors of cells, ECM proteins and other soluble molecules, resulting in the 

mediation of cell-cell interactions and ECM-cell crosstalk [101-103]. These events 

control a complex network of cellular activities such as cell adhesion, proliferation, 

differentiation that occur in physiological and pathological processes [100-102, 109]. An 

example is represented by integrins that are among the most studied receptors for their 

glycosylation and the interactions with the surrounding glyco-environment. Figure 1. 3 

illustrates the interactions of integrins with the glycans that modifies the ECM proteins, 

the GAGs and glycocalyx components that can modulate integrins function during cancer 

progression. 

1.1.4.4 Glycosylation Modifications in Ischemia 

The effect of the ischemia on the skeletal muscle glycoenvironment remains a largely 

unexplored topic. The most studied phenomenon evoked by ischemia is the degradation 

of the endothelial glycocalyx as a feature of microvascular dysfunction [110, 111]. The 

glycocalyx is the combination of PGs, glycoproteins, GSLs, and soluble GAGs on the 

outer leaflet of the plasma membrane of eukaryotic cells that mediates the interactions 

with the external environment [112-114]. 

In particular, the endothelial glycocalyx is an important structural and functional part of 

the vascular barrier since it modulates body fluid homeostasis, controls the inflammatory 

reactions by mediating the adhesion of platelets and leukocytes and capturing circulating 

growth factors and cytokines [115, 116]. The endothelial glycocalyx is predominantly 
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composed by GAGs such as HS, CS and HA, but also by glycoproteins with a bulky O- 

and N-glycan portion [115]. These glycoproteins generally are the CAMs, the selectins 

(E and P), integrins and immunoglobulins, that are involved in mediating the interactions 

with leukocytes and platelets [110]. 

As described in section 1.2.1, the ischemic pathological process is characterized by 

microvascular dysfunction: the consequent oxygen deprivation is accompanied by 

oxidative stress, inflammation with the release of cytokines and chemoattractants, 

leukocyte recruitment and increased vascular permeability at the endothelial surface [67, 

117]. These molecular events not only trigger angiogenesis as a compensatory mechanism 

but also induce a significant alteration to the endothelial glycocalyx [118].  

The loss of components of the endothelial glycocalyx termed shedding can range from 

superficial degradation to complete layer destruction, and  selective cleavage of HS and 

CS or the removal of entire syndecan and glypican core proteins can occur [119]. The 

glycocalyx shedding as a consequence of ischemia/reperfusion has been observed not 

only in rodents such as rats and guinea pigs [120-122], but also in humans: glycocalyx 

perturbation was demonstrated in patients undergoing major vascular surgery with global 

or regional ischemia [123]. The oxidative stress plays an important role in this 

phenomenon: studies showed that the effects of ischemia/reperfusion on the glycocalyx 

could be attenuated by the inhibition of xanthine-oxidoreductase, an endogenous ROS 

generating enzyme found on HS chains in the glycocalyx [124]. In addition, inflammatory 

mediators such as cytokines and chemoattractants were found to contribute to the 

shedding of the glycocalyx in arterioles, capillaries, and venules under different 

experimental models of inflammation [119, 125]. In particular, TNF-Ŭ has been shown to 

modulate glycosylation genes in endothelial cells, leading to increased Ŭ-(2, 6)-sialylation 

acid and fucosylation and mannosylation on receptor- associated glycans [126]. These 

modifications are crucial in mediating the recruitment of leukocytes on the endothelium. 

Furthermore, during inflammation activated leukocytes secrete enzymes which can 

contribute to the degradation of the glycocalyx [127, 128]. Taken together, these results 

support a role for the endothelial glycocalyx in the pathophysiology of inflammatory 

response associated with ischemia/reperfusion-induced tissue damage.  
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Figure 1. 2 Mammalian glycans on the cell membrane. The main classes of glycans, 

glycosaminoglycans (GAGs), N-glycans, O-glycans, glycosphingolipids, and 

glycosylphosphatidylinositol (GPI) anchor. GAGs, heparin sulphate, chondroitin 

sulphate, hyaluronic acid, dermatan sulphate, and keratin sulphate, are depicted. NS, 2S, 

4S, and 6S represent the sulphation positions on the GAGs chains. Representative 

examples of complex-type N (biïtriïtetraïantennary) and high-mannose N-glycans are 

illustrated. Also depicted are core 1ï4 O-glycans, O-mannose, O-fucose, and O-glucose 

structures. Glycan linkages are identified by the anomeric configuration (Ŭ or ɓ) of the 

donor saccharide and by the ring position (1ï6) of the acceptor sugar. The GPI anchor 

and examples of glycosphingolipids are also represented. Asn, asparagine; ECM, 

extracellular matrix; EtnïP, a phosphoethanolamine; PI, phosphatidylinositol; Ser, serine; 

Thr, threonine. 
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Figure 1. 3 Integrinïglycans interactions in cancer glyco-microenvironment. A) O-

glycans of the aberrant oncofibronectin (OFn) interact with integrins mediating 

epithelialïmesenchymal transition. B) N-glycans of extracellular matrix (ECM) major 

proteins, such as laminin and collagen, mediate the binding with integrin receptors. C) 

The interaction between GAGs and integrins activates integrins themselves and mediates 

their coupling with growth factor receptors (GFRs). D) The glycocalyx preserves integrin 

conformation maintaining pH. E) Mechanical action of the glycocalyx in mediating 

integrin clustering. F) Carbohydrateïcarbohydrate interactions (CCIs) between the 

glycans present on integrins and the glycosphingolipids mediate the formation of 

microdomains that are crucial in signal transduction. ER, endoplasmic reticulum. 
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In a rat model of myocardial ischemia reperfusion (I/R), the quantitative analysis of N-

linked glyco-peptides revealed changes in several ECM and cell surface proteins such as 

integrins ŬV, Ŭ6, Ŭ7, and ɓ1, suggesting that the N-glycosylation of these integrins is 

involved in myocardial extracellular remodelling, [129, 130] in turn suggesting a 

mechanism for the failure of collateral angiogenesis in diabetic microangiopathy; in a 

CLI model of diabetic mice, the impaired angiogenesis was due to glycation of 

vitronectin. This event prevents VEGF-induced VEGFR-2 activation by disrupting 

VEGFR-2ïŬvɓ3 integrin cross-talk and consequently leads to the reduction in the 

migration of endothelial cells and capillary outgrowth.   

A recent study also investigated the effect of ischemia on GAGs such as HS and CS in a 

rat model. Ischemia induced changes in HS and CS structure, size and sulphation pattern. 

These structural modifications are correlated with the modulation of GAG abilities to 

bind growth factors and to regulate muscle regeneration [131].  

 Even though glycocalyx shedding has been well-characterized, a complete insight into 

the glycosignature of the ischemic pathological environment is still required. In the 

following paragraphs, the roles of the glycans in inflammation, angiogenesis and muscle 

regeneration, the main pathological features occurring in muscle ischemia, are 

summarized. 

1.1.4.5 Roles of Glycans in Inflammation 

Glycosylation can fine-regulate inflammation in several respects and through several 

mechanisms [132, 133]. One of the key phenomena of the inflammatory process is the 

recruitment of leukocytes from the blood stream to the injured site within the tissue [134]. 

Leukocyte recruitment consists in several steps: the capture of the cells from the 

circulation by the endothelium, the rolling and firm adhesion of the leukocytes on the 

vessel wall and the transmigration of the tissue through endothelial cells. All these events 

are regulated by a complex network that involves adhesion receptors, chemokines, 

cytokines and other regulatory molecules [134]. Glycosylation adds further complexity 

to the control of the whole process of leukocyte recruitment [135, 136]. In particular, the 

interactions with leukocytes and endothelium also involve adhesion proteins like integrins 

that are glycosylated as well as glycan-binding proteins such as selectins, galectins and 

siglecs that are important mediators of the processes [133, 137-140].  
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The capture of leukocytes and rolling along the vessel wall is mainly mediated by 

selectins, in combination with chemokine receptors. These interactions trigger a 

conformational change in integrins on leukocytes that allows them to bind the Ig 

superfamily of adhesion molecules [intercellular adhesion molecule 1 (ICAM-1); 

VCAM-1)] present on the endothelial cells. Selectins are glycan-binding proteins that 

interact with a specific O-glycan epitope (NeuAc-Ŭ2, 3-Gal-ɓ1, 4-(Fuc-Ŭ1, 3)-GlcNAc) 

named sialyl Lewis x (SLex) that is present on their counter receptors [141]. While O-

glycosylation is a major regulator of the leukocyte capture and rolling stages, N-

glycosylation seems to regulate the firm adhesion stage [142]. In particular, N-

glycosylation of endothelial adhesion molecules ICAM-1 and VCAM-1 modulates their 

conformation and their affinity for the respective counterpart ligands on leukocytes [132].  

ICAM-1, especially, expressed on the endothelium presents eight N-glycosylation sites 

[143] and the extension and complexity of their N-glycans can modulate the binding 

avidity to integrins, ŬMɓ2 (Mac-1) and ŬLɓ2 (LFA-1) on leukocytes. In particular, 

complex Ŭ-(2, 6)-sialic acid on ICAM-I seems to be crucial in mediating this interaction 

[144]. In contrast, VCAM-I appears not to require sialylation for the interactions with the 

very late antigen (VLA)-4 ligand on leukocytes [145]. These findings suggest that N-

glycans can differentially modulate the interaction of different endothelium-leukocyte 

proteins and this might depend on the fact that whether neutral or sialylated N-glycans 

can allosterically modulate protein conformation depending on the epitope. Indeed, 

sialylated motifs are known to allosterically regulate integrin-binding to their ligand [108, 

146]. 

 Another molecular mechanism important in the leukocyte glycan-mediated adhesion 

involves Galectins. Galectins are a class of 15 conserved glycan-binding proteins [147] 

that are mainly specific for N-acetyllactosamine (Galɓ1,3GlcNAc or Galɓ1,4GlcNAc), a 

common disaccharide unit typical of many N- or O-linked glycans [148]. Galectins are 

involved in various biological processes including inflammation [149, 150]. Galectins 

have shown the ability to affect leukocyte-recruitment by various mechanisms. Galectins-

1, -3, -8 and -9 have been observed to differentially affect neutrophil trafficking by 

interacting with lactose residues on endothelial and leukocyte integrins and platelet 

endothelial cell adhesion molecule (PECAM-1), ICAM-2 [151-153].  
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Most of the studies are focused on galectin-3, expressed both on endothelial cells and on 

leukocytes [149, 154, 155]. Galectin-3 regulates rolling and adhesion of eosinophils by 

binding both to VCAM-1 in Ŭ4ɓ1 integrin [145]. Rao et al., suggested that galectin-3 may 

associate with Ŭ4ɓ1 integrin on the eosinophil cell membrane and improve Ŭ4ɓ1 binding 

to VCAM-1.  

Other glycan-binding proteins present on hematopoietic cell surface are important in 

mediating inflammatory processes, the sialic acidïbinding Ig-like lectins, siglecs proteins 

[133, 156]. Unlike galectins, siglecs are a family of proteins (14 in humans) that are able 

to recognize a wide spectrum of sialylated structures that can differ in the linkage and the 

number of residues [157]. Specifically, some evidence suggests that siglec-1 and -5 have 

a role in mediating the adhesion of the leukocyte to the endothelium [158, 159]. Indeed, 

recombinant siglec-1 was observed to strongly bind granulocytes and to NK-cells, 

monocytes, B and T-lymphocytes [158], while siglec-5 binds and mediates monocytes 

adhesion to the endothelium by binding P-selectin glycoprotein ligand-1 or von 

Willebrand factor [159]. Furthermore, a recent study identified siglec-5 as a serum marker 

for CLI in diabetic patients [160], suggesting that sialylation can be a mediator in the 

ischemia-mediated inflammation. Overall, these observation highlight the critical role of 

sialylation in mediating several stages of the inflammatory leukocytes trafficking.  

 Moreover, the GAG components of the endothelial glycocalyx also play a major role in 

the regulation of the leucocyte recruitment cascade during inflammation [161]. During 

inflammation, a chemotactic gradient is established that guides leukocytes to the injured 

tissue. Endothelial GAGs, including HS, DS, CS and HP, contribute to this gradient by 

binding the chemokines and presenting them to the leukocytes, and also by preventing 

their dilution and proteolysis [162, 163]. For example, HS has been proved to sequester 

MIP-2/CXCL2, essential for neutrophil rolling end extravasation [164].  

GAGs such as HS and HP can also have a crucial part in mediating the tight adhesion of 

the leukocytes by mediating the crosstalk with other endothelial receptors. For example, 

HSGP such as syndecans modulate integrin-mediated tight adhesion of leukocytes to the 

endothelium. In addition, HA present in the endothelial glycocalyx is another important 

regulator of the leukocyte cascade since its interaction with CD44 receptors on leukocytes 

is a key event in the rolling, the firm adhesion the transmigration and the chemotaxis 

[165].  
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1.1.4.6 Roles of Glycans in Angiogenesis 

The ischemic trauma triggers angiogenesis as a reaction and glycans have also shown a 

regulatory ability in this process: glycans can control vascular biology, regulating the 

signalling of migration, survival of endothelial cells, vascular integrity and permeability 

[166, 167]. This angiogenic regulatory action involves several glycan species (O/N-

glycans and GAGs) and occurs with several mechanisms [166, 168, 169].  

Indeed, a wide variety of genes involved in glycosylation synthesis and remodelling 

(glycosyltransferases and glycosidases) has been shown to be differentially regulated 

during the angiogenesis process, in response to proangiogenic growth factors and 

cytokines [126, 170].  

O-glycosylation highly enriches the endothelial glycocalyx. In particular, mucine type 

core 1 and core 3 (Figure 1. 2) appear to have a crucial role in maintaining blood vessel 

integrity in the brain and the lymph nodes as reviewed by Herzog et al., [171]. 

Additionally, O-fucosylation seems to regulate the angiogenic sprouting through the 

modification and subsequent activation of Notch signalling [172].  

N-glycosylation is also important in mediating angiogenesis. Indeed, proangiogenic 

receptors such as VEGFR, PECAM-I and the proangiogenic integrins Ŭvɓ3, Ŭ5ɓ1 are 

highly N-glycosylated, and their glycan moieties are involved in regulating ligand binding 

and the consequent activation of signalling [171]. Indeed, sialylation of the VEGF 

receptor has been shown to mediate endothelial cell motility and proliferation. In 

particular, Ŭ-(2, 6)-sialic acid on the VEGFR have been shown to be essential in mediating 

the binding to VEGF [171]. Ŭ-(2, 6)-sialylation has also been shown to mediate tumor 

angiogenesis by regulating the signal of complex PECAM-VEGFR2-ɓ3 integrin on the 

endothelial cells [173]. These findings indicate the emerging role Ŭ-(2, 6)-sialylation in 

endothelial cell proliferation and survival by modulating the cell signal transduction 

and by stabilizing angiogenic molecules. Therefore Ŭ-(2, 6)-sialylation represents a new 

target for pro or anti-angiogenesis therapy. 

Another glycan species involved in regulating the angiogenic events are poly-LacNAc 

terminals that represent ligands for galectins. Indeed, changes of the endothelial cell 

surface glycosylation can display or mask specific glycan epitopes regulating the binding 

of galectins. Galectin-1,-3,-8 and 9 showed the ability to control different angiogenic 
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programs by interacting with different receptors and regulating different angiogenic 

pathways [150]. Most of the knowledge in this regard is on tumor-linked angiogenesis 

which is mainly triggered by the hypoxic and inflammatory environment. Croci et al., 

demonstrated that hypoxia can promote N-glycan remodelling that favours galectin 

binding [174]. In particular, they observed increasing ɓ-(1, 6)- N-glycan branched 

structures and polylactose on endothelial cells, which is an epitope for Galectin-1. The 

subsequent galectin-1 binding activates pro-angiogenic pathways, mechanism that has 

been proved to regulate abnormal angiogenesis in chemotherapy refractory tumors. 

 Yet another galectin involved in mediating angiogenesis is galectin-3 which has been 

shown to bind N-glycans present on the proangiogenic integrin ‌vɓ3 which subsequently 

activates signal pathways that lead to the growth of new blood vessels in the cornea [175]. 

Galectin-3 interaction with N-glycan moieties present not only on Ŭvɓ3 integrins but also 

on receptors VEGFR-2 has been observed in the cornea [176]. 

One of the outstanding questions is whether these glycan-related angiogenic mechanisms 

observed in different environments, like tumor angiogenesis for example, have a role also 

in the context of the angiogenesis induced in the muscle ischemia and whether enhancing 

those mechanisms could be beneficial in promoting a therapeutic vascularization. 

Another mechanism involving glycan-mediated angiogenesis is the crosstalk and the 

synergy with angiogenic growth factor receptors and integrins that amplify and propagate 

the intracellular response [177]. GAGs and PGs are important mediators of this crosstalk, 

since they bind angiogenic growth factors such as VEGF [178] and FGF2 [179], they 

present them to their receptors, and protect them from proteolytic targets [168]. In 

particular, HS and CS proteoglycans were shown to be important in mediating 

angiogenesis by regulating the sprouting in vessel induced by VEGFA [180].  

HSPGs play a major role in this context since they bind angiogenic regulating molecules: 

growth factors, inhibitors and receptors creating a complex network of interaction [168]. 

Heparin/HSPGs also bind the pro-angiogenic integrins Ŭ5ɓ1 and Ŭvɓ3 [181, 182] and this 

interaction can positively or negatively modulate angiogenesis. Medeiros et al.  [183] 

observed in endothelial cells that the interaction of HP with RGD integrins leads to the 

upregulation of HSPGs synthesis, an event associated with the phosphorylation of focal 

adhesion proteins and Ras/Raf/MEK pathways activation, even if the effect of this 
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activation has not yet been investigated [183]. Other evidence shows the involvement of 

syndecan-1, such as syndecans, and perlecans in mediating angiogenesis by mediating 

the crosstalk between both Ŭvɓ3 and Ŭvɓ5 integrins with the VEGFR receptors in the 

early stage of endothelial cell dissemination [184].  

Because of the activity in regulating angiogenesis, GAG mimetics have been developed 

and used for the purpose of stimulating angiogenesis [185]. 

1.1.4.7 Role of Glycans in the Skeletal Muscle Physiology and Regeneration 

Glycans also play a major role in the skeletal muscle where they are part of sarcolemma 

and ECM and are crucial in many physiological processes such as myogenesis, 

differentiation, regeneration, regulation of conductivity and contraction [186-188]. At 

present, the glycan data on human or mouse muscle are based on lectins and gene 

expression of glycosylation enzymes [189-193]. 

The major glycoproteins associated with the muscle cell membrane are the Ŭ-

dystroglycan (Ŭ-DG) and integrin Ŭ7ɓ1 that bind ECM and transduce forces during 

contractions [194, 195]. The glycosylation of Ŭ-DG represents the majority of the 

knowledge on muscle glycosylation. O-mannosylation is a prominent modification of Ŭ-

DG and it is crucial for its interaction with laminin. Defects of O-mannosylation cause 

reduced fiber binding to ECM and are associated with neuromuscular disorders [196, 

197], suggesting that O-mannosylation is crucial in the physiology of healthy muscle. In 

contrast, even if the role of integrin glycosylation has been widely studied [109], the 

glycosylation of skeletal muscle integrins and their associated functions need further 

investigation [194]. Both Ŭ-DG and integrin Ŭ7ɓ1 enrich the sarcolemma domain of the 

neuromuscular junction that transmits signals from nerve to fibers. The neuromuscular 

junction is characterized by the presence of N-acetylgalactosamine (GalNAc) [198]. 

GalNac is a glycan residue that is associated with differentiation and regeneration since 

it has been reported to increase in differentiating myotubes when culturing C2C12 

myoblasts [198]. Furthermore, complex gangliosides synthesized by the Galgt1 enzyme 

have been shown to be associated with muscle regeneration: the knockdown Galgt1 gene 

(which adds the ɓ-(1,4) GalNAc to the gangliosides backbone) in murine models of 

muscle injury has been reported to a decrease in gene expression for the satellite cell 
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marker Pax7 and resulted in less myofiber formation [199], corroborating the evidence 

that GalNAc is a sugar moiety associated with muscle regeneration.  

In addition, GAGs have been documented to be crucial in the regeneration of muscle as 

thoroughly reviewed by Brandan and Gutierrez [188]. In particular, HSPGs and CSPG 

participate in various processes in this context. During the myogenesis and differentiation 

occurring after muscle injury, the expression of different HSPGs and CSPG is dynamic 

and this reflects the complexity of the functions that they assume. 

As part of the satellite cell niche, HSPG and CSPG can regulate their proliferation and 

differentiation [200]. This regulatory action is exhibited by the interaction with various 

growth factors including insulin-like growth factor (IGF), FGF, hepatocyte growth factor 

(HGF) and TGFɓ [201, 202].  

Overall, these findings suggest that certain glycan species such as GalNAc and HS and 

CS are important in mediating fiber differentiation and regeneration. Further studies that 

can determine a full glyco-characterization of the differentiating muscle fibers might lead 

to the discovery of the biological mechanisms regulated by these glycan markers. 

Furthermore, a full analysis of the skeletal muscle glycome will  provide a deeper insight 

into the structural and functional roles of glycans in muscle homeostasis. 

1.1.5 Conclusions and Future Directions 

A comprehensive and in-depth understanding of the molecular mechanisms underlying 

ischemia, inflammation, angiogenesis and muscle degeneration is essential to design the 

most appropriate treatment for CLI. This section highlights the important aspects of 

glycosylation within the context of inflammation, angiogenesis and muscle physiology/ 

regeneration, key events occurring in the ischemic disease. Alterations of glycosylation 

regulate several aspects of these processes, mediating the binding of the ligand to growth 

factors, the adhesion and the migration of cells. Alteration of O-glycans, N-glycans and 

GAGs is involved in these events, suggesting that targeting specific glycan alterations 

can modulate inflammation, angiogenesis and regeneration and therefore represent a 

potential therapeutic strategy. Further studies comprehensively examining the 

glycosylation of ischemic tissues and patient biopsies are required to establish whether 

the glycosylation can serve as a prognosis predictor factor and a diagnostic tool for CLI. 

Interdisciplinary research efforts incorporating computational and analytical methods are 
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essential to elucidate not only the structural changes of glycosylation but also the causal 

link with the ischemic insult.  

1.2 Biomaterials as the Key of/ to Tissue Regeneration Strategies for  CLI  

1.2.1 Current Therapeutic Approaches for CLI  

CLI is a severe disease with very limited therapeutic options for most patients. The lack 

of options for these patients and the necessity to improve the efficacy of gold-standard 

therapies has guided the design and development of regenerative medicine approaches. 

In particular, pro-angiogenic growth factors, nucleic acids and stem or vascular cells have 

been the focus of the emerging therapeutic strategies over recent years. First tested in 

preclinical models, growth factors, gene therapy (plasmid encoding for growth factors or 

microRNA) and stem/vascular cells either alone or in combination have reached clinical 

phase. Several clinical trials have shown their promising effects promoting the formation 

of new blood vessels [203-206]. However, despite the beneficial outcomes, each of these 

approaches continue to present a number of translational challenges and limitations. 

The efficacy of growth factors or recombinant proteins in stimulating angiogenesis is 

limited by their short half-lives. The administration of growth factors have also shown 

adverse effects in preclinical models [207]. Specifically, the administration of FGF-2 

caused hypotension [208], while VEGF caused the formation of leaky blood vessels and 

tissue edema [209].  

Nucleic acid delivery has its own limitations that include poor in vivo transfection efficacy 

and also on the other hand the risk of developing tumors or other vascular aberrations due 

to  persistent overexpression of GFs [210]. Cell therapy using mesenchymal stem cells, 

marrow-derived CD34+ cells, mononuclear cells and endothelial cells has been 

successful in a number of pre-clinical trials. Furthermore, clinical studies with autologous 

stem cells have been successful in reducing the mortality (less than 15%) [211, 212] but 

not in reducing the amputation rates among CLI patients [213, 214].  

Biomaterial systems have emerged as a strategy to overcome the limitations of the 

aforementioned therapies. Indeed, in the last 20 years, biomaterials have been used as 

drug delivery systems and as a supportive matrix for prolonging cell survival in several 

preclinical applications. In the specific case of CLI, various biomaterial systems have 
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been used both alone and in combination with growth factors, genes and cells in several 

preclinical models where they have been shown to induce tissue regeneration and 

angiogenesis [215-217]. However, despite promising preclinical results, the therapeutic 

efficacy of biomaterial-based for CLI has yet to be validated at the clinical level. Indeed, 

only a gelatin hydrogel/microspheres system with FGF has been shown to improve 

clinical outcomes in patients [218]. This section aims to summarize and review the recent 

advances in the combinatorial and non ï biomaterial- based therapy for CLI application. 

1.2.2 Biomaterials Application for CLI  

The ECM is the complex three-dimensional environment that surrounds cells and 

orchestrates normal development and homeostasis of tissues. The ECM is composed of 

various macromolecules such as collagen, elastin and proteoglycans that not only have a 

structural function but also interact with the cells activating regulatory processes [219]. 

Using biomaterial systems attempts to mimic the ECM in damaged tissues. ECM-inspired 

materials, indeed, have the purpose to provide chemical, mechanical and biological inputs 

to cells, stimulating regenerative programs [220]. 

In particular, the biomaterials applied to the ischemic diseases are designed and 

engineered to promote blood reperfusion by encouraging the formation of new blood 

vessels [215]. As such, these biomaterials must modulate cell fate by promoting cell 

adhesion and migration, and provide mechanical support that triggers proliferation signals 

via mechanotransduction.  

Several biomaterials, natural and synthetic, protein or polysaccharide-based and in 

different forms (hydrogels, microparticles, nanoparticles and nanofibers) have been 

investigated for CLI applications. The natural materials tested have been polysaccharide-

based such as alginate, GAGs and chitosan as well as protein- based such as collagen and 

elastin. Synthetic/recombinant materials have also been tested in preclinical models of 

CLI [215-217]. The above mentioned biomaterials have been used both alone and in 

combination with growth factors, nucleic acid and cells in several preclinical models 

where they have shown the ability to induce tissue regeneration and angiogenesis [215-

217].  
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1.2.2.1 Biomaterials in the Combinatorial Strategy 

1.2.2.1.1 Biomaterials and Growth Factors/Cytokines 

Over the past decade, growth factors/cytokines have been among the main protagonists 

of research efforts and clinical trials for CLI. Despite encouraging results, the clinical 

efficacy is limited by the short half-life in the pathologic environment [221]. Furthermore, 

excessive doses of the growth factor can generate some adverse effects. Administration 

of FGF-2 in high dose caused hypotension while VEGF resulted in the formation of leaky 

blood vessels and edema. The combined delivery of FGF-2 and VEGF, instead, was 

associated with a rise of diabetic retinopathy and nephropathy [207]. Moreover, co-

morbidities such as diabetes and hyperlipidemia can reduce the efficacy of growth factors 

[222]. 

The aforementioned limitations suggest that it is essential to improve the efficacy of 

growth factors by prolonging their half-life and controlling the dose. Loading the 

GFs/cytokines in the biomaterial-systems represents a strategy to protect them from 

degradation, to target specifically the ischemic tissue and to achieve a sustained and 

controlled release that is crucial in the development of a mature and stable vascular 

network [223].   

To date, a variety of naturally derived or synthetic materials have been used to deliver 

growth factors in preclinical models of CLI. Alginate, chitosan, collagen, poly-lactic-co-

glycolic acid (PLGA), gelatin, fibrin, dextran, have been adopted in several type of 

formulations - single- component or hybrid composites such as hydrogels, microspheres 

and nanoparticles- and in combination with a wide spectrum of proangiogenic cytokines 

(Table 1. 2). 

The most studied material systems in CLI preclinical models so far have been hydrogels 

composed of alginate. When implanted into a murine CLI model, a HGF loaded-alginate 

hydrogel resulted in increased blood perfusion and arteriole density over that of the HGF 

alone -treated group [224]. The co-delivery of IGF and VEGF from the same hydrogel 

not only improved the vascularization, but also had a beneficial effect on muscle fibers 

both in mouse [223] and rabbit [225] models.  
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