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Abstract

Critical limb ischemia (CLI) is severe impairment of the microcirculation resulting in
inflammation, ischaemic pain, ndrealing ulcers and gangrer@ver 20% of patients
haveno option but to undergo a major limb antgtion Therefore, the need to develop
new therapies is urgento this end, there are three important aspects to be taken in
account: 1) to have a preclinical model that would mimic as closely as possible the
pathological events associated to CLI; 2) tederstand the molecular basis of the
pathological events, 3) to provide extracellular matrix inputs to the damaged tissue to

stimulate the formation of new blood vessels.

In the light of these considerations, this thesis has contributed to the fieldawith
multidisciplinary approach. Firstly, a severe model of CLI was established and
characterized in a wildtype mouse. The bldloav recovery was severely impaired and
histopathological features associated with ischemiaecrosis, inflammation, and
spontaneus angiogenic responseere present. Secondly, thisodel was adopted to
study the glycoenvironment modifications provoked by the ischemic ifsulbng the
biomolecules involved in the ischemic regeneration, glycans remain the least explored,
despite tlir critical functional and structural role8lthough the role of glycans in
mediating these pathological events has been reported, changes in the glycosignature
following muscle ischemia remains poorly understoBistinctive N-glycosylation
modificatiors- increase of mannosidic species, alteration of sialylation type balance and
reduction of hybrid and bisected glycans were identified. These modificademigied

can serve asnolecular targets and used when designing new therapeutic strategies
Finally, an Hastinlike hydrogel was tested for its potential modulation of the -post
ischemic remodelling. Elastin is a natural protein present in the H@Wregulates
specific cell pathwaysand mediatesell activities such as differentiatioRecently,
Elagin-like recombinamers (ELRd)ave demonstrated an angiogenic potential both

vitro andin vivo. Theadministration of an elastiiike recombinamers (ELRs) hydrogel

was able to stimulate angiogenesis in a severe model of CLI. The hydrogel also induced
the remodelling of ECM compments towards the healthy statd-glycosylation
modulationwere reported which suggested particular, the role of mannosylation and

sialylation in mediating the healing effect.
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This study suggests that the ELRs hydrogel isremising clinical candidate for the
treatment of CLI, and identifies glycosylation alterations as potential new therapeutic

targets.

Critical Limb Ischemia (CLI) is a severe blockage of the blood vessels which markedly
reduces blood flow to the legs ahds progressed to the point of severe pain and even
skin ulcers or soresln this thesis,an animal model of CLI was developed and
charcterized.This modehasbeenused in the analysis of the sugagnature in ischemic
tissues in the limbThe elastidike recombinamer (ELR) hydrogel was also tested using
the model and was shown to have a positiveceft@ thedevelopmeat of blood new
blood vesselsf the ischemic limb. The sugatudieswereuseful to gain a deep insight

of the molecular mechanisms occurring at the different stages of the isaleperitusion
process and the effect of the ELR hydrogel.
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Chapter One

Int roduction

Sections of this chaptérave been published the following manuscript: Marsico G.,
Russo L., Quondamatteo F. and Pandit A. (2018). Glycosylation and Integrin Regulation
in CancerTrends in Cancer4(8): 537552



Introduction

1 Introduction

1.1 Peripheral Arterial Disease

Cardiovascular disease (CVD) has long been the leading cause of death worldwide. In
2013, CVD accounted for 31% of all deaths, representing a 41.7% increase since 1990.
Among the conditions classified as CVD, myocardial ietaon (MI) and peripheral
artery disease (PAD) are associated with significant morbidity and mortality. In the
United States alone, approximately 8.5 million individuals are afflicted by PAD, and an
estimated 66000 individuals experience a new Ml and 3® have recurrent MI

annually[1-4].

Peripheral arterial diseases (PADs) asibcatgoryof CVD that is chaaderized by the
obstructionof blood flowin noncardiac, nofintracranial arteriesmostfrequentlyas a
consequence ohtherosclerosisThe atherosclerotic lesiomesults froma chronic
inflammatoryprocess thastarts with the depositioof fatty acids, cholesterdibrin and
cellular wastalebrisin the intimal layer of the arterythe subsequenacaimulationof
monocytes and macrophagesich is involved in theformation ofa necroticplaque
causeghe arterial wall ruptureOncethe plaque is exposed to the bloodstrermasa
high potentiako causeocclusionof the blood circulatiorfFigure 1. 1) [5, 6]. Theblood
flow blockagdeads to deprivation of oxygen and nutrients, resulting in inflammatidn
tissue necrosiOthercausesassociated with PABareembolism, thrombus formian,
vasculits or other nofinflammatory artriopathieswhile common riskfactors are

hypertension, smokingedentaryife-style,diabetes, high cholesterol aaltl age[7].
1.1.1 Critical Limb Ischemia (CLI)

Critical limb ischemia (CLI) is a manifestation of PAD that occurs with the occlusion of
arteriesof the lower extremitief8]. With an estimated yearly incidence of 500 to 1000
new cases per million individuals in Western sociitig, ever increasing in concert with
the increase in cardiovascular risk factdZdl also imposes substantial burdean
patients, healthcare providers, and resoufggsMortality rates as high as 20% within
six monthsof diagnosis and exceeding 50%fiae years have been reported for CLI,
whereasonedear mortality rates in onrevascularizable, gpalled finodHption CLI

patient® range fron20% to 40%.



Introduction

The symptoms ofCLI patientsare pain at rest intermittent claudicationn the early
stagesnonthealing ulcers andangrene at thiater stagesThe Fontaine scotis usedn
classifying theseverity of CLI in clinical stages The stages rangfom the first
asymptomatistage throughtheintermittent claudication stade the final stage: painta
rest, ulceration and gangrefieable 1. J).

1.1.2Clinical M anagementand Current Treatment for CLI

In addition to pain relief and wound healingCLI treatmens aim at obtaining
revascularization of the lower lim&imultaneoudreatments are ofterequired for the
control of cardiovasdar riskfactors and glycemid&evascularization strategies currently

in useinvolve surgical intervention through endovascular techrsquebypasgFigure

1.1). Factors such as the extent of the lesion, comorbidities, the presence of multiple
arteries occlusioand the presence dbot ulcerdeterminghedecision towarda certain
procedurd10].

Endovascular procedures aim at removing the occlusyompening the artery and are
considered minimally invasive. Bovascular proceduseare mplementedwhen the
arterial occlusion occurs under the groin area. In genttredeare performed witha
puncture of the groin that all@maccesdo the arterial segment of interest, under local

anaesthesia. Some of the endoudar procedures include:

w Angioplasty, the insertion a small balloon in the artery. The balloon is inflated using
a saline solution to liberate the artery

w Cryoplasty, the balloon is inflated using nitrous oxide that freezes the plaque,
arresting its growt and generatingninimal scar tissue.

w Stents, metal mesh tubtdeat actas scaffolds that are inserted in the artery and left
in place. Stents can be selpanding when they open upon release or lmmito
expanded when an angioplasty balloon is used to thyaen.

w Laser atherectomy, where the plaque is treated with a laser probe.

w Directional atherectomy, the occlusion is physically remas#aga rotating cutting

blade introduced with a catheter.

If the arterial occlusioims not suitablefor endovascular pogdures, patients are treated
with bypass surgery. Bypass is a segment of a vein from a patient or an externlahgraft
is attached laterally tthe occluded portion to ensure thia¢ blood flowwill bypasst.

3
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Stage | No symptoms

Stage Il Intermittent claudication

Stage lla | Without pain on resting, but with claudication atistahce greater than
200 metres

Stage IIb | Without pain on resting, but with a cligation distance less than 200
metres

Stage Ill | Nocturnal and / or resting pain
Stage IV | Necrosis (death of tise) and/ or gangrene in the limb
Table 1.1: Fontaine classification of CLI stages.




Introduction

Bypass interventions are mainly used in patients presentinthyeaitologous vascular
grafts.Both endovacular procedures and bypass surgeries areaited if the patienis
effectedby a major localied occlusion. Howevefi n o o pt i oare thpsaithi ent s
multiple cemorbidities and occlusi@in smaller arterieand therefore armot eligible

or fail revascularizationand will undergo primary limb amputatiqf]. Therefore the

development odnew treatmento addresshis clinical need is urgently required.

1.1.3 Pathophysiology of CLI

The pathophysiology of I, caused by theeductionof bloodsupply, leads taa complex
pathophysidogical scenario involving hypoxia, oxidative stress,macreé and
microvascular dysfunctions, inflammation and muscle fiber degener&tiogressive
alterationsnot only involve the skeletal muscle but alskin, bone and nerggll, 12]

The %keletal muscle is th&ssuemost vulnerable to the ischemic insal within an
interval oftwo hours, thenuscle vasculature is severely impaired, aftersix hours, the
damage to the muscle fibers is irreversidld]. The consequent musctiegeneration
starts with disruption of the myofiber sarcolemma, followed by an increase in
permeability that leads to cell deatldarecrosis. The breakdown products of the muscle
fiber initiate the inflammatory response at the interface betweedead andlamaged

muscles (Figure 1. 1).

Specifically, circulating inflammatory cells such as mephils and macrophages are
activated and recruited at the site of the injury where they phargecgells debris.
Inflammatory cell infiltration and fiber necrosis represent the major histopathological
features associated with muscle degeneration follgpvischemiaAnother feature is the
occurenceof arteriogenesis and angiogenesis as a response to the ischemiflsult
15]. However, the spontaneous vessel growth reaction renreadequate to provide
sufficient blood perfusionio the ischemic limbin fact, the ischemic environment alters
the structure and the function of endothelial cells which are crucial in maintaing@ng
integrity and stabilityf theblood vesse]14, 16] Endothelial cell dysfunction can cause
abnormal activation of platelets and leukocyte adhesion which contsbtdeard
formation of microthrombi within the sprouting capillaries. Wtrients and oxygen

exchanges impairedat capillary levelandthis contributes to thedtestabilization.
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Figure 1. 1 Schematic representation of the pathological scenario of CLand the

current treatments. CLI arises when occlusion of arteries of the lower limb occurs,
mostly probably due to the formation of the atherosclerotic plaque in the arterial wall.
The resultingreduction inblood flow and the consequent lack of oxygen and nutrients
cause the necrosis of skeletal muscle. The damaged muscle fibers present inflammatory
cell infiltration at the necrotic segments. The damage triggers the differentiation of the
satellite cells,present in the intact segments, into myoblasts that starts a responsive
regeneration processCurrent treatments are based on revascularizattomtegies
involving surgical intervention throughypassor endovascular techniquéstents and

balloons).
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1.1.3.1 Inflammation in CLI

Inflammationis one of the most prominent pathological eg@mCLI [17]. Inflammation

is a fundamental pathological procekat occurs in response to an injury that can be
causé by a physical, chemical, or biologitagent. It generallinvolvesa complexseries

of cellular and moleculareactionghat stars in blood vesseland continue irtissuesat
the injury site[18]. Thus inflammatoryresponsds characterized by an infiltration of
lymphocytes, mononuclear cells/macrophages, and granulocytes intguitesl tissue
and by the sectn of various pro-inflammatory cytokines that orchestrate the
inflammatory processKey regulatorof the process are theellularadhesiommolecules
(CAMs) that are present both on the endothelial cells wall and also anetimyane of
the inflammatory cells. Among CAMselectins and integrins are th&jor protagonists
of this interactiorand are well established markers of inflammation.

In CLlI, the inflammatory response is triggeredtbgdamagdo skeletal fibersandtheir
degradation productattractin situ phagocyteg13]. The hypoxicenvironment also
contributes to generate and sustain the inflammatory resgj@BseThe absence of
oxygen activees thehypoxiaindudble factors(HIFs) gene expressiowhich is one of
the major regulaterof several aspects of inflamation including the modulatioof

myelad cell activities[20].

Specifically,HIF-1 (promotesthe motility, recruitment and aggregation of myeloid cells

in inflamed tissues bincreasingthe generationof ATP and alsainhibits apoptosis of
neutrophils,prolongng their survival[21, 22] Furthermore, HF-1U coordinates the
induction oftoll-like receptos (TLRS) signalling which amplifiesthen uc |l ear f act
(NF-a Bpathway that plays a central role in the generation of an inflammatory response.
IndeedNF-s B p at hpvangte phagocytosis, leukocytemgitment, and adaptive
immunity [23] andcanalsodetermine the secretion of pimflammatorycytokinessuch
astumor necrosis factor alpf@NF-U), or interferon (IFNYo  achethokines suchs
interleukin (L)-8, monocyte chemattractant protein (MCP), potentiating the
inflammatoryreaction[24]. Other preinflammatory gtokinessuch asnterleukinsIL-1,

IL-6 are secreted and are considet@tie markers of CLI[25-28]. All these cytokirs

are part of the ischam inflammasome and evege of them has apecific role in

mediating the events occurring in the ischemutuced inflammation[27, 28]
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TNFFU has been ext ensi voenflagjmmatonyaatumednh vdvo madedsd f o r
of disease anih in vitro models of inflammatory tissue injuf29-32]. TNF-U i s a ke
cytokine which mediateseveral inaemmatory event$oth in myocadial and limb
ischemic tissueTNF-Uis responsible foleukocyte adhesion tihe endotheliumthrough
upregulating thexpression of adhesion molecules sucketectins and CAMsnd also
through increasingascular permealiiy that facilitatedblood cell extravasatio[29-32].
High levek of TNF-Uhave been observed iisgue ad serum in CLI patientf26, 28,

33].

IL-1 is another pranflammatory cytokine, secreted by mononuclear cells, thatiacts
upregulating neutrophil adhesion molecules on the endotheliumismdtianulaesthe
proliferation of macrophageneutrophilsJymphocytesB ard T [34]. IL-1 alsoinduces
the synthesis of nitric oxide synthase (NQ&himportant inflammatory mediatoAs a
result of these eventmmflammation is increasedlL -1 has been shown to be a marker of
the PAD pathological progressi¢sb].

IL-6 is another inflammatory cytokifeund upregulated in CLI patients and considered
to bea reliable prognosis predictf#7]. IL-6 is synthesized bgeveral cells including the
inflammatory infiltrating repertoire, fibroblast and endothedells. IL-6 exhibits its pre
inflammatory function throgh several process for example it stimulates the
production of other cytokines likdCP-1 and IL-8 by macrophageandendothelial cells

[36]. IL-6 stimulates the secretion thfeso-called acutgphase protein€-reactive protein
(CRP), fibrinogen production, the release of complement factors and the production of
serum amyloid A37, 38]

Other important molecules that have been found as CLI nsaakdmdicatorsof disease
progression are thmatrix metalloproteinases (MMRSAII of thesemediatorshavean
important role during the inflammatory process and the tissue remodehlamgthat

occur during ischemic disea9].

MMPs is a family of enzymesthat are responsiblefor the proteolysis of many
extracellular matrix (ECMgomponents including collagen, fibroneatimdlaminin[40].
During the inflammatory proced8IMPs arereleasd by various inflammatory cells such
as leukocytesand macrophagesand the consequent ECM degradatiaailitatestheir

invasion[41].
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CAMs are crucial in mediating the Ikocyte recruinentat the injured siteThis process

is initiated by selectins. Among CAMselectinshave beemletectedo be increasgin

the plasma of patients with PADs and are recognizeashakers of the diseadd?].
Selectins are adhesion molessilpresent both ahe endothelium and on several blood
cellssuch as granulgtes, monocytes and lymphocy{é8]. Selectins mediate leukoiey
recruitment, secifically duringthe initial steps o€apture and subsequent rolling on the
endothelial wall[44, 45] The selectins on the endothelial cells are not expressed
healthy conditionsvhile, during inflammationjnflammaory cytokines such as TNB

and IL-1 fstimulatetheir transcriptiorand their presentatioon the luminal endothelial
cell membrand46-48]. Therefore selectins are important players in exacerbating the

pathologcal context of ischemia.

The inflammation process during ischemia is complex and a deegerstanding of the
intricate interactions and connections between the varidtgellular and molecular
players involved is essentifar the clinical purpose of den- regulatinginflammation in

CLI ischemia patients.
1.13.2 Angiogenesisaand Vascular Dysfunctionin CLI

Angiogenesis, the development of new blood vessels from existing capilianesked
by the migration of dormant endothelial cells that get odaenectedy VE-cadherin to
form sprouting tubes that become covered by peridy@s The angiogenic process i
finely regulated by a vaety of molecules including prangionic cytokinessuch as
vascular endothelial growth factors A (VEGFEAproblast growth factors (FGFs): FGF1
and FGF2, angiopoietin (AN@G), and platelet derived growth factor (PDGFand
adhe®n molecules such as imensU v pUB5 (4D, 50] After the ischemic injury, the
body tries to compensafer the reduction of blood supply by inducing angioggsand

vascular remodellinfl5, 51}

The mechanisms that regulate the ischeimgaiced angiogenic response are several and
theyare influenced by the ischemic pathologicahtextthat includedypoxia, oxidative

stressjnflammationandthealterationin hemodynamidorcesin the capillarie§52, 53]

One of thebestknownmolecular mechanisntshind the ischeraiinduced blood vessel
growth is triggered by the lack of oxygen and involves theegpilationof HIF-1 and

HIF-2. The latter growth factonmducethe expression of gesencoding for angiogenic

9
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growth factors including vascular endothelial grovightors A (VEGFA),its receptor
VEGFR1,nitric oxide (NO), ad erythropoietin (EPQ}stromaderived factor 1SDF1),
ANG-2, plateletderived gowth factor (PDGFBB), andstem cell facto(SCH [54-57].
Furthermoreptherproangiogenidactorsupregulatedby the hypoxic stimulusvia NFaB
pathway are L6, cyclooxygenase (COX), TNF-U macrophage inflammatogyrotein

2 (MIP-2), intercellula adhesion molecule (ICAM), veslar cell adhesion molecule
(VCAM), IL-8, chemokine (€&motif) ligand 5 (CCL% and inducible nitric oxide
synthas€iNOS) [53].

Several other important mechanisms involve the various types of inflammatarhaell
accumulate at the ischemic tissue where they are active in mediating vascular remodelling
in CLI [20]. In particular the myeloid cells such as monocytes and macrophages are well
documentedasinfluencingthe sprouting of nevblood vessels during inflammatioim

many waysMonocytes and macrophagean both act in a paracrineamnmer, secreting
pro-angiogenicgrowth factors andtan also cause the degradatiaf the ECM upon
secretionof MMPs and other proteolytic enzymes. This event allows endothelial cell

migrationto form new capillaries.

In particular, nenocytesare able to iduceangiogenesiwith a paracrine secretion of pro
angiogenic growth factors su@asbFGF andvEGF family [20]. Monocytes also release
MMP-9 that mediates the forrtian of newcapillarybrancheg$58].

Macrophages also favour the formation of new capillaries, promoting the fusion of
endothelial cell§59]. Macrophages arbroadly divided irto two sulpopulations:M1

with pro-inflammaory properties and M2 that exhibit aninflammatory effects,
promoting tissue repal60]. These two subpopulations aret absolute but a spectrum

of phenotypes.Generally, M1 and M2macrophagesave opposite #ects on the
angiogenaic processM1 macrophagesave a negative influencen angiogenesis since
they impedeproliferation of the endotheli& cells [61], while M2 macrophagesan

enhancehesecreton of the angigenic factoFGF[62].

Another mechanism thabntributesin the ischenmainduced angiogenesisvolves the
shear stress that has adperole in collateral remodellinf$3-66]. Indeed, theeduction
of blood flow determines changes in themodyamic forces ffressure and flow rate)

occurring in collateravessels. The increasé shear stress is sensedthgintegrins on

10
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endothelial cellsactivating cytoskeleton remelling.| n par ti cul ar , Uv b
found to be increased on collateral endothelium, immediately after isc@fhid he
mechanotrasduction through integrinkeads to the transcription of MG-1 [63], an
important preangiogenic growth factpand alsoactivates Rho kinase signking [66].

RhoA specifically modulates expanding collateral vessels by regulating- actin

cytoskelebn movementsan the endothelial and smooth muscle cf8ls, 66]

Despite these mechanisms of compensatiespontaeaus angiogenic responserist

able to reestablish an adeate revascularization and blosapply to the ischemic tissue.
Thereasorfor thisis that ischemia causdsamatic vasculaturgysfunction[67]. One of

the mechanisms behind thdysfunctioninvolvesTNF-U s i gnal | i ng swhi c |
adheres junctions and consequentlyncreass the endothelial permeability{68].
Specifically, this occurs through the reductiohthe expression ofascularendotheliat

cadhemn, key components of the junctioasd the increasa generatiorof mitochondrial

reactive oxygen species (RQ8)endothelial cell$69-71].

Indeed in CLI patients arterioles are vasodilated arténd to baunresponsivéo stimuli,

with aconsequenfiormation ofoedemdl16]. Arteriolesthat present oedenc@mpromise
the supply of oxygen and nutrients to capillaiesl contribute to thedestabilization.
Endothelial ell dysfunction can also cause abnoragtlvation of leukocytandplatelets

and contribute toward$fie formationof microthrombiwithin the forming capillaries.

Therefore further investigatioaf these mechanisms urgently required to desiga

therapythat can potentiate the innate angiogenic response to reach clinical efficacy.

1.13.3 Skeletd Muscle Damageand Regenerationin CLI

The skeletal muscle &tissuethat ismostvulnerableto the ischemia reperfusion damage.
The alterations reportenh the skeletal muscle ofLI patients includ muscle fiber
apoptosisatrophy,necrosisand theswitching from oxidative type I to glycolytic type I
fibers[13]. Furthermoremuscle fibesundergadenervationmitochondrial DNAdamage
and aberrantmyosin heavy chaimproduction[72-74]. Several molecular and cellular
mechanisms are involvad thesepathological events. Specificallliypoxig oxidative
stressand the inflammatory environmeplay a key role in the mechanisms that lead to

muscle damage

11
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Hypoxiais a stimulus thahducesan increase of TLRsnboth immune and neimmune
cells TLRsare weltknownkey regulators of apapsis ancplay a large part in ischemia
induced cell dange[75]. In the skeletal musclELRs 1 9 isoforms are prese[#5, 76}
TLRs 2, 4, 6, 8, and 9 have been shown to be upregulated in respdreszeinduced
skeletal muscle damagrurthermore, TLRs 2, 4, and #ave been found upregulated

muscle biopsieshiained from patients with CILV6].

Besides activating the extrisic apoptosis pathwayhe activation of TLRs triggers the
release ofariouspro-inflammatory cytoknesincluding TNF-U , -6 [7@]. In particulay
the latterinflammatorycytokines not onlyregulatethe inflammatory cells bure also
involvedin mediatingn theskeletal muscldamagelt has been reportatiat TNF-Uand
IL-6 levelsare increased i€LI. These factoranduce skeletal muscle praoigsis and
correlate withthe decreasedtrengthof muscle mass elderly patient$77-79].

Furthermore TNF-U has been observed to induapoptosisof myocytes[80]. Other
inflammatory markers thatave been reported behighin CLI patients such agCRP,
IL-6, andVCAM-1), were correlaed with a shrunken calf [25]. In addition, IL-6 and
solubleVCAM-1 were associated withedeposition of adipose tissue in the caliscle
of rats[17]. This evidence suggesthe role of the inflammatory response ustinng

andexacerbatinghe initial muscle damage caused by the ischemic insult.

Another mechanisnmvolved in theskeletaloss sthat ofoxidative stress. ROgenerated
during ischema[24, 72, 81]represenanother factor able to indutee secretion of NF-
U b wctiation of p38 mitogen &ivated kinase (MAPK)and therefore contribugéo
the TNF-U dependent apoptos|82, 83] Additionally, the ROS speciesan cause an
intragytosolic accumulation of Gathat consequentljeads tathe production of calcium
pyrophosphate complexes and themation of uric acidhatcontributes tdNA damage
anddisruption to thecell membrang84, 85]

While recentadvancesn regeneative medicine aimed at stimulating angiogenesis have
made progress, little is knovaboutthe degeneration of the skeletal muscle in {86+

88]. Thereforefurther investigation of the mechanism of tissue darragereration in

the ischemic musclas needed to identify therapeutic targttat areable to induce and

potentiate the regeneration of the muscle fibers.

12
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It is well documented thathe skeletal muscle is able to build up ar#aneous
regeneration respge due to the presence of the residemscle stem cells, also known
as satellite cellg89, 90] In a healthy musc|d?ax7+satellitecells are in a quiescestate
andlocalized in thebasal lamina adjacent tche sarcolemma of theyofibers. After
injury, satellite cellse-enter the cell cyclanddifferentiaeinto the committed progenitor
myocytesthatproliferateandfusewith each other or texistingdamagedibers to epair
their structure andestore thig function A part of them also undergesymmetric seK
renewal to replenish the original stem cell pool in the my8é&le The fuson of myocytes
resultsinthe formation of cenétl nucleated fibers (CNFs) which have nuclei in the centre
of the cytoplasm, and are generally recognized as regenerated myq@Be@&3] The
presence and the acition of satellite cellsand CNFshavebeen documented in the
ischemic muscle of rat and mouse mod8ék, 95] suggestinghat the ischemic insult

can trigger a regenerative response.

In the healthy adult humamuscle,the majority ofsatellitecellsis localizedin close
proximity to capillaries andhereis a correlation betweethe amount otapillaries in
myofibers and thetotal number of satellitecells [96]. Furthermore endothelial cells
secretéANG-1 that has been repodéo regulatesatellite cell behavioumcreasng self
renewal[97]. These observatignsuggest that there is a paracrine citadls between
endothelial and saték cells andhatcapillaries arafundamental element of the satellite

stem cell niche.

Further insightsnto the mechanism that activates satellite cells and the interaction with
their microenvironment occurring in the ischeninah are needed. Indegb address the
problem of the ischemic muscle damage is a clinical priority, since the muscle represent
a urce of growth factors and mechanical support to the sprouting new bloodsvessel
Equally important,the muscle loss is also thought to twee of the reasanfor the

inefficacy of the current revascularization therapies.

1.14 The Importance of Glycosylation in the Regulation of Molecular Mechanisms

Understandingthe molecular mechanisms underlying the pathological presexs
diseasess crucial in designing new efficient therapié<or this purposean interest in
studying glycans has grown recently time scientific communityf98]. Glycansare

biomolecules thahighly enrich the cell membrane and the ECM of eukaryotes and they
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have a crucial role in fireegulatingthe complex network of cellular events such as cell
adhesion, proliferatioanddifferentiation[99]. Their role is fundamental in physiological
conditions and several glycaifterationsalsooccurin a number opathological proceses
from geneticdiseasesto cancer suggesting thathese molecas are important in
medgting pathological eventgl00-102].

1.14.1 Glycosylation and itsComplexity

Glycosylation is a complex pegtanslational modification(PTM) that allows the
attachment of glycans to proteins, lipids and other saccharides, and regulates their
functiors [99, 103] The mammalian glycome has a wide structural heterogeneity and
variety that results fromthe combinatorial expression of more than 200
glycosyltransferase and@lycosidase enzymes involved inettsynthesisand the
remodelling[103]. Biosynthesis is not templativen but regulated by many factors
including the availability of nucleotide donors and the expression of enzjiés
Structural diversity of glycans is due to thember and sequercef monosaccharide
units and to anomeric configuration, position, and differéntimanching of
monosaccharidesAdditionally, glycan chains have other common modifications
derivatization of hydroxyls or amino groups, acylation, sulphation, methylation, and
phosphorylatiorjl04]. The glycome is dynamic and changes in response to intracellular

and extracellular signa[402].
1.14.2 The Main Mammalian Glycan Species

Figurel. 2 illustrates the maiimammalianglycan categoriesO-glycans N-glycans
GAGs, glycosphingolipids (GSLs), and glycosylphosphatidylinositol (GPI) anchor. O
glycans andN-glycansare branched and/or linear wsttures that mainly enrich the
glycocalyx N-glycans are linked to asparaginéhrough an Nacetylglucosamine
(GlcNac) while Gglycans are usually attached to threonine, serine or tyrosine through
N-acetylgalactosamine (GalNac) and in some cases throughos®&fMan) and fucose
(Fuc)[99, 103] Both O-glycans and Noranched structures can be highly complex, and
the addition of branching and terminal sugars is characterized by-tsstel lineagé
specificity [99, 105] In contrast glycosaminoglycans (8Gs) are linear structures,
sulphated, negatively charged polysaccharidasenrich the ECMGAGs are composed

of disaccharide repeating uniguronic acid (Bglucoronicacid O-GIcA) or L-iduronic
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acid (IdoA)) andan amino sugar (fgalactosamine (E5alN) or D-glucosamineg(D-
GIcN). GAGs ardivided intononsulphated the hyaluronic acid (HA) and sulphated:
chondroitin siphate (CS), dermatan sulphate (DS), keratan sulphate (KS), heparin (HP)
and heparan sulphate (HB)6]. All these GAGs species are linked to proteins through

a covalent bond to threme/serie, forming a class fo glycoprotens named
proteoglycans (PGs)The excepion is HA which is the only GAG not attached to
proteins. GSLs are mol e dinkédegkicose orngplactosed o0
associated with the ceramide molecule. The initial core can undergmadbéktension

and modiication. The GPI anchor is a PTiflat anchors the modified protein in the outer
leaflet of the cell membrane. The GPI is a complex PTM of protein in the outer layer of
the membrane constituted by a phospholipid molecule, a glycae aond a
phosphoethanolamine (ER) linker [106].

All glycans have a constant core structure that can be mobifigbe addition of different
residues at the distant positions. The terminal modificativasusubly expressed in a
lineagespecific mannerwhile the core structuseare conserved imany cell lineages
and tissue typef9]. The terminals ofN-glycansand Oglycanscan be modified by
sialylation fucosylation and mannosylationwhile GAGs are mainly modifiedy

sulphation.

1 Sialic acids are negatively charged glycan units, usually present at the terminal end
of sugar structureld 07]. Sialylation is represented by sialic acid i-(2} 3)-, -(4)
6)-, o(2, 8)-Uinkage to a variety of underlying glycan precussmm mammals.
The enzymes responsible for these modificationisofrms ofsialyltransferases
specific for the linkage.

. Mannosylation of glycans isharacteded by U-(1, 2)-, U(1, 3)-, U-(1, 6) -linked
mannose residugbat can formbranchedstructure called a high mannose type
attached to the Mlycan core structureMannose is also found ione of the
structure of O-glycans(Figure 1. 2.

Fucosylation of glycans is charactrid b3y 20U U -( 1 a«l@®4)lioked
Fuc to linkages terminal and subtermisabstituentof N-, O-, and lipid linked
glycans.

1 Glycan sulphltion is a characteristic of t&@AGs however, i is alsofound among

other classes of glycans. Mast 30 sulpbtransferases amesponsible for glycan
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sulphation by 4 i | i spihnogs p 3 @ a d-ephasghosulphate5aé a sudpd
donor from tle environment. This providea wide varietyin glycan sybhation

patterns

1.14.3 Glycan Biological Functions

Substantially, glycans cannfluence protein structure and function, establishing
intramolecular and intermolecular interactidd®5]. Glycans present on proteigan
stabilizetheir structue: they act as a shield, protecting the protein surface from the action
of proteases and preventiagecific protein-protein interaction$105]. Glycosylation

also affects the conformation of receptors, their folding, the intracellular kiafficthe
localization on cell membranes, and the rate of degradgtiis) 108] Glycosylation is
crucial as well in determining the binding affinity with antigens, cell surface
proteins/receptors of cells, ECMagteins and other soluble molecules, resulting in the
mediation of celicell interactions and ECMell crosstalk[101-103]. These events
control a complex network of cellular activities such as cell adhepiaiiferation,
differentiationthat occuiin physiological and pathological proces$&80-102, 109] An
example is represented by integrins that are among the most studied receptors for their
glycosylation and the interactions with the surroundjhygo-envirorment.Figure 1.3
illustrates the interactions of integrins with the glycans that modifies the ECM proteins
the GAGs and glycocalyx components that can modulate integrins function during cancer

progression.

1.14.4 Glycosylation Modifications in Ischemia

The effect of the ischemion the skeletal muscle glycoenvironment remains a largely
unexplored topic. The most studied phenomenon evoked by ischemia is the degradation
of the endothelial glycocalyx as a feature of microvascular dysfunidtidh 111] The
glycocalyx is thecombinationof PGs glycoproteins, GSLs, and soluble GAGs on the
outer leaflet of the plasma membrane of eukaryotic teis mediates the interactions

with the external environmefit12-114].

In particular, the endothelial glycocalyx is an important structural and functional part of
the vascular barrier since it modulates body fluid homeostasis, controls the inflammatory
reactions by mediatintpeadheson of platelets and leukocytasd capturing circulating
growth factors and cytoking415, 116] The endothelial glycocalyx is @daminantly
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composed b¥sAGs such as HS, CS and HA, but atgoglycoprotens with abulky O-
and Nglycan portion[115]. These tycoproteins generally arthe CAMs, the selectins
(E and P), integrins and immunoglobulins, that are involvedddiating the interactions
with leukocytes and platelef&10].

As described irsection 1.2.1, the ischemicpathological process characterizedy
microvascular dysfunction: the consequent oxygen deprivation is accompanied by
oxidative stress, inflammation witthe release of cytokines and chemoattractants,
leukocyte recruitment and increased vascpameability at the endothelial surfdé&,

117]. These molecular events not only trigger angiogenesis@apensatory mechanism

but also induce a significhalteration to the endothelial glycocalfi18].

The loss of components of the endothelial glycocalyx termed shedding can range from
superficial degradation to complete layer destructaomd selective cleavage of HS and

CS ortheremoval of entire syndecan anbymjcan core proteins can occfirl9]. The
glycocalyx shedding as a consequencésofiemid@reperfusionhas been observeatbt

only in rodents suclasrats and guinea psd120-122], but also in humans: glycocalyx
perturbation was demonstrated in patients undergoing major vascular surgery with global
or regional ischemia[123]. The oxidative stress plays an important radethis
phenomenon: studies showed that the effects of ischemia/reperfusion on the glycocalyx
could be attenuated ke inhibition of xanthineoxidoreductase, an endogenous ROS
generating enzyme found on HS chains in the glycodaB#]. In addtion, inflammatory
mediators such as cytokines and chemoattractants were found to contribute to the
shedding ofthe glycocalyx in arterioles, capillaries, and venules under different
experimental models of inflammati¢hl9, 125] In particulat TNF-U has been sh
modulate glycosylation genes in endothelial cells, fegth increasgU-(2, 6)-sialylation

acid and fucosylation and mannosylation on recemssociated glycand26]. These
modifications are crucial in mediating the ratment of leukocytes otihe endothelium
Furthermore, during inflammation activated leukocytsereteenzymes which can
contribute to the degradatiarf theglycocalyx[127, 128] Taken together, these results
support a role fothe endothelial glycocalyxn the pathophysiology of inflammatory

response associated with ischemia/reperfusidoced tissue damage.
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Figure 1.2 Mammalian glycans on thecell membrane. The main classes of glycans,
glycosaminoglycans (GAGSs), N-glycans O-glycans, glycosphingolipids, and
glycosylphosphatidylinositol(GPI) anchor. GAGs, heparin subglk, chondroitin
sulphate, hyaluronic acid, dermatan gldte, and keratin sphate, are depicted. NS, 2S,

4S, and 6S represent the phdtion positons on the GAGs chains. Representative
examples of complekype N (bi trii tetrd antennary) and higlmannoseN-glycansare
illustrated. Also depicted are core4lO-glycans, Gmannose, Gucose, and €glucose
structures. Glycan linkages are identified bgthanomer i ¢ c om)f i @furtah
donor saccharide and by the ring position6)lof the acceptor sugar. The GPI anchor
and examples of glycosphingolipids are also represented. Asn, asparagine; ECM,
extracellular matrix; EP, a phosphoethanolamjrid, phosphatidylinositol; Ser, serine;

Thr, threonine.
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Figure 1. 3 Integrini glycansinteractions in cancer glyco-microenvironment. A) O-
glycans of the aberrant oncofibronectin (OFn) interact with integrinsliatieg
epithelial mesenchymal transitiolB) N-glycansof extracellular matrix (ECM) major
proteins, such as laminin and collagen, mediate theilg with integrin receptor<C)

The interaction between GAGs and integrins activates integrins themsedveediates

their coupling with gowth factor receptors (GFR$)) The glycocalyx preserves integri
conformation maintaining pHE) Mechanical action of the glycocalyx imediating
integrin clustering.F) Carbohydratecarbohydrate interactions (CCIs) bebemethe
glycans present on integrins and the glycosphingolipids mediate the formation of

microdomains that are crucial in signal transduction. ER, endoplasmic reticulum.
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In a rat model of myocardial ischemia reperfusion (lfR¢ quantitative angsis of N-
linked glyco-peptides revealed changes in several ECM and cell surface psatehes
integrins UV,sugdesting thatzhe -ylygcosdatidn df these integrins is
involved in myocardial extracellular remodellinfl29, 130]in turn suggestinga
mechanism for the failure of collateral angiogenesis in diabetic microangiopatay

CLI model of diabetic mice, the impaired angiogenesis was due to glycation of
vitronectin. This event prevents VEGfduced VEGFR2 activation by disrupting
VEGFR2iUv b 3 i nt dakrandnconseguertls lesdo the reduction in the

migration of endothelial cells and capilfasutgrowth.

A recent study also investigated the effect of ischemia on GAGs siith aslCS in a
rat model. Iscemia induced changes in HS and CS stragtsize and sulphation pattern.
These structural modifications are correlated with the modulation of GAG abilities to

bind growth factors and to regulateiscle regeneratidd31].

Even thoughglycocalyx shedding has been wellaracterized, a complete insighto

the glycosignature of the ischemic pathological environment is still required. In the
following paragraphghe roles of the glycansn inflammation, angiogenesis and muscle
regeneration, the main pathological features occurring in muscle is¢chamda

summarized

1.14.5Roles ofGlycans inInflammation

Glycosylationcan fineregulate inflammation in severaéspectsand through several
mechanisra [132, 133] One of the key phenomena thie inflammatoryprocess ighe
recruitment of leukocytes from the blood stream tarfheedsite within the tissugl34].
Leukocyte recruitment consists in several steps: capture of the cells from the
circulation by the endothelium, the rolling and firm adhesion of the leukocytes on the
vessel waland theransmigration of the tissue through endothelial cells. All these events
are regulated by a complex netwotkat involves adhesion receptors, chemokines,
cytokines and other regulatory molecu]@84]. Glycosylation adds further complexity

to the control of the whole process of leukocyte recruitrfid8, 136] In particularthe
interactions with leukocytes anddatheliumalsoinvolve adhesion proteins like integrins
that are glycosylateds well agglycanbinding proteins suchsselectins,galectins and
siglecsthatare important mediators of the proceq4&3, 137140].
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The captureof leukocytesand rolling along the vessel wall is mainly mediated by
selecins, in combination with chemale recetors These interactionstrigger a
conformationalchange inintegrins on leukocytesthat allows them to bindthe Ig
superfamly of adhesion molecules [intercellulaadhesion molecule 1 (ICAM);
VCAM-1)] present on the endothelial celBelectins are glycahinding proteins that
interact with a specific @lycan epitopgNeuAcU 23;Gakb 14;(FucU 13)-GIcNAC)
namedsialyl Lewisx (SLex) that ispresent on their counter receptftd1]. While O
glycosylation is a major regulataf the leukocyte capture and limg stages, N
glycosylation seems to regulate thBrm adhesionstage [142]. In particular, N-
glycosylation of endothelial adhesion molecul@aM-1 and VCAM-1 modulate their

conformation and their affinitior therespectiveeourterpart liganden leukocyte$132].

ICAM-1, especially expressed on the endotheliymesens eight N-glycosylation sites
[143] and he extension and complexitf their N-glycanscan modulate the binding
avidity to intle)gramd, ULbbleukotkylincparticular
complexU-(2, 6)-sialic acidon ICAM-1 seems tdoe crucial in mediating this interaction
[144]. In contrast VCAM-| appearsot to require sialylatiofor the interactions with the
very late antigen (VLAY ligand on leukocytefl45]. Thesefindings suggest thaN-
glycanscan differentially modulate the interaction dafférent endotheliureukocyte
proteins and this might depewd the fact thatvhetherneutral or sialylatedN-glycans
can allostericallymodulate protein conformationdepending on thespitope. Indeed
sialylatedmotifsareknown to allosterically regulatmtegrintbinding to thé ligand[108,
146].

Another molecular mechanism important in the leukogfyeanmediated adhesion
involves GalectinsGalectins are a class &6 conservedylycanbinding proteing147]

that are mainly specificforfd cet yl | act osami ne ( Gal b1, 3GI
common disaccharidenit typical ofmany N or O-linked glycang148]. Galectins are

involved in variaus biological processeascluding inflammaion [149, 150] Galectins

have shown thability to affect leukocyteecruitment by various mechanisnGalectins

1, -3, -8 and-9 have been observed differentially affect neutrophil traffickingoy
interacting with lactose residues on endothelial and leukodgtegrins andplatelet
endothelial cell adhesion molecyRECAM-1), ICAM-2 [151-153].
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Most of the studies are focused galectin3, expressed both on endothelial cells and on
leukocyteqg149, 154, 155]Galectin3 regulates roliig and adhesion of eosinophils by
binding bothto VCAM1 i n U 4 {145]. Raoet &.guggested that galectBimay
associate with U4b1 integrin on the eosi
to VCAM-1.

Other glycarbinding proteins present on hematopoietic cell surface are important in
mediating inflammatory processéisesialic acid binding Iglike lectins siglecs proteins
[133, 156] Unlike galectins siglecs are a family of proteins (14 in humans) that are able
to recognize a wide spectrurhsialylated structures that can differ in the linkage and the
number of residugd.57]. Specifically some evidencsuggets thatsiglec1 and-5 have

a role in mediating the adhesion of the leukod¢gtthe endotheliunmil58, 159] Indeed
recombinant sigled was observed to strongly bind granulocytes smd\NK-cells,
monocytes, Band T-lymphocyteg158], while siglee5 bindsand mediates monocytes
adhesion to the endotheliudmy binding Pselectin glycoprotein ligand or von
Willebrand factof159]. Furthermorea recent study identifiesiglec5 asa serunmarker

for CLI in diabetic patient$160], suggesting thadialylationcan be a mediator in the
ischemiamediated inflammatiorOverall,these observation Higjght the critical role of

sialylation in mediating several stages a thflammatory leukocytes trafficking.

Moreover the GAG components of the endothelial glycocabfso play a major role in
the regulation othe leucocyte recruitment cascade during inflamnrafits1]. During
inflammation a chemotactic gradient is abtished that guides leukocyt&sthe injurel
tissue. Endothelial GAG#ncludingHS, DS, CSandHP, contribute to this gidient by
binding the chemokineand preseimig them to the leukocytesind alsdby preventing
their dilution and proteolysigl62, 163] For exampleHS has been proved to sequester
MIP-2/CXCL2, essential foneutrophilrolling end extravsaion [164].

GAGs such as HS and HP calsohave a crucial part in mediating the tight adhesibn

the leukocytes by mediating the crosstalk with other endothelial receptors. For example
HSGP such asyndecans moduta integrirmediated tight adhesion of leukocytes to the
endotheliumIn addition HA present in the endothelial glycocaligxanother important
regulator of the leukocyte cascalece its interaction witED44 receptorsn leukocytes

is a key evenin the rolling, the firm adhesion the transmigration and the chemotaxis
[165].
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1.14.6 Roles ofGlycansin Angiogenesis

The ischemic trauma triggers angiogenesis as a reactioghyarats have also shown a
regulatoryability in this process: glycans can control vascular biology, regul#tiag
signalling of migration, survival of endothdlieells, vasculanntegrity and permeabtly
[166, 167] This angiogenicregulatory actioninvolves several glycaspecies(O/N-

glycansand GAGs)yandoccurs with several mechanisfi$6, 168, 169]

Indeed a wide variety of gerseinvolved in glycosylation synthesis and remodelling
(glycosyltransferases and glycosidgsieas beenshownto be differentially regulated
during the angiogenesis process responseto proangiogeit growth factors and
cytokines[126, 170]

O-glycosylationhighly enriches the endothelial glycocalyx. In particuraucine type
core 1 and cor8 (Figure 1. 2 appeato have a crucial role in maintainiriood vessel
integrity in the brain and theyimph nodes as reviewed by Herzag al., [171].

Additionally, O-fucosylation seem$o regulate the angiogenic sproutitfgough the

modification and subsequeattivation of Notch signallinfl72].

N-glycosylation is also important in mediating angiogenesis. Indpezhngiogenic
receptorssuch as VEGFRPECAMI and the proangiogeniategrinsU v b5 pafe
highly N-glycosylated, and their glycan mbés are involved in regulating ligand binding
and the consequerdctivation of signalling [171]. Indeed, sialylation of the VEGF
receptor has been shown mediateendothelial cell motility andoroliferation. In
particular,U-(2, 6)-sialic acid on th&/ EGFRhave been shown te essentiah mediating
the bindingto VEGF [171]. U-(2, 6)-sialylation hasalso been stwn to mediate tumor
angiogenesis by regulating the signal of complex PEMRGFR2b 3 i nt egr i n
endothelial cell§173]. These findings indicate the emerging rok2, 6)-sialylationin
endothelial cdlproliferation andsurvival by modulatingthe cellsignal transduction
and bystabilizingangiogenic molecule§ hereford}(2, 6)-sialylationrepreserganew

target for pro oantiangiogenesis therapy.

Another glycarspeciedgnvolved in regulating thangiogenic events apoly-LacNAc
terminals that represent ligands for galectins. Indekdnges ofthe endothelial cell
surface glycosylation can display or mask specific glycan epitopes regulating the binding

of galectins. Galectil,-3,-8 and 9 showedhe ability to control different angiogenic
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programs by interacting with different receptors and regulating different angiogenic
pathwayg150]. Most of the knowledge in this regard is on tuntiodked angiogenesis
which is mainly triggered byhe hypoxic and inflammatory environmerCrociet al.,
demonstrated thabypoxia can promote MNylycan remodelling thatavours galectin
binding [174]. In particular they observedncreasing b-(1, 6)- N-glycan branched
structures angbolylactose on endothelial cellshich is an epitope for Galectih. The
subsequent galectih bindingactivates preangiogenic pathwaysnechanisnthat has

been proved to regulate abnormal angiogenesis in chenagtyrefractorytumors.

Yet anothergalectin involved in mediating angiogenesgalectin3 which has been
shown to bindN-glycanspresent oithe proangiogenimtegrin| vb3 which subsequently
activates signal pathways that lead to the growth ofblead vessealin the cornedl75].
Galectin3interactionwithN-gl ycan moi eti es present not
on receptors VEGR-2 has been observed in the corfiez6].

One of the outstanding quests is whether these glycaelated angiogenic mechanisms
observed in different environmenli&e tumor angiogenesis for example, have a role also
in the context of the angiogenesis induced in the misthemia and whether enhamg
those mechanisms doube beneficial in promoting a therapeutic vascularization.

Another mechanism involving glycanediated angiogenesis is the crosstalk and the
synergy with angiogenic growth factor receptors and integrinathplify and propagate
the intracellular respae[177]. GAGs and®Gsare important mediators of this crosstalk,
since they bind angiogenic growth factors such as VIEGB] and FGF2[179], they
present them to theireceptors and protect them from protetic targets[168]. In
particulat HS and CSproteoglycanswere shown to be important in mediating

angiogenesiby regulatingthe sproutingin vesselinduced by VEGFA180].

HSPG play a major role ithis context since they bind angiogenic regulating molecules:
growth factors, inhibitors and receptors creating a compdéworkof interaction[168].
Heparin/HSPGs also bindthepson gi o geni ¢ i rJtv diBt, 188]and tHis b 1
interaction can positively or negatively modulate angiogendesleiroset al. [183]
observed in endothelial cells that the interaction of HP with RGD intetgads to the
upregulation of HSPGs synthesis, an event associated with the phosphorylation of focal

adhesion proteins and Ras/Raf/MEK pathways activation, even if the effect of this
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activation has not yet been investigat83]. Other evidencshows the involvement of
syndecarl, such as syndecans, and perledgansmediating angiogenesis by mediating
the crosstalk betweeboth U v baBd U v5hintegrins with the VEGFR receptors in the
early stage of endothelial cell disseminatib84].

Because of the activity in regulating angiogenegSBG mimetics have been developed

and usedor the pupose 6 stimulatingangiogenesifl85].

1.14.7 Role of Glycans inthe Skeletal MusclePhysiology andRegeneration

Glycans also play a major role in the skeletal muatiere theyare part okarcolemma

and ECM and are crucial in many physiological processes such as myogenesis,
differentiation, regenation, regulation of conductivity and contractifi86-188]. At
present,the glycan data onhuman or mousenuscle are based on lectins agehe

expressiorof glycosylation enzymeld 89-193].

The maj or gl ycoproteins associated- with
dystrogb®@)x aand Uibrithatnd E@M add’ transduce forces during
contractions[194, 195] The gl y c o s-PG eeprésesnthe méjority of the
knowledge ommuscle glycosylation. @nannosylatioris a prominent modification df-

DG and it is cruciafor its interaction with lamim. Defects of Gmannosylatiorcause

reduced fiber binding to ECM arate associated with neuromudar disorderg196,

197], suggesting that Mannosylation is crucial in the physiology of healthy mudaole
contrast, even if the rolef integrin glycosylation habeen widely studied109], the
glycosylationof skeletal muscle integrsnand their associated funct®need further
investigation[194].Bo t WGandi nt egrin U7b1 enrich the ¢
neuromusculajunction that transnstsignals from nerve to fibers. The neuromuscular
junction is characterizedoy the presewe of N-acetylgalactosamine (GalNA [198].

GalNac is a glycan residukatis associated with differentiation and regenerasorce

it has beenreported toincrease in differentiating myotubeshen culturing C2C12
myoblastq198]. Furthemore complex gangliosidesynthesized by th&algtlenzyme

have been shown to be associated with muscle regenethgdmockdowrGalgtlgene
(whichaddst h e(1,4p GalNAc to the gangliosidesbackbone)in murine models of
muscleinjury has been reported sdecreasen gene expression for the satellite cell

27



Introduction

marker Pax7andresultedin lessmyofiber formation[199], corroborating thevidence

thatGalNAcis a sugamoietyassociaté with muscle regeneration.

In addition GAGs have been documented to be crucidhéeregeneration ahuscleas
thoroughly reviewed by Brandan and Gutierrg88]. In particular HSPGsand CSPG
participatein various processes in this contetiringthemyogenesis and differentiation
occurring after musclajury, the expresion of different HSPGand CSPG islynamic

and this reflects the complexity of the functions that they assume.

As part of thesatellite cell nicheHSPG and CSB can regulate thepproliferationand
differentiation[200]. This regulatory action is exhibited by the interaction with various
growth factorsncluding insulinlike growth factor (IGF)FGF, hepatocytgrowth factor
(HGF) andT G F[B01, 202]

Overall these findings suggest that certain glycan species such as GalNAc and HS and
CSareimportant in mediating fiber differentiation and regeneration. Further sttidies

can determine a full glyeoharacterization of the differgating muscle fibers might lead

to the discovery ofthe biological mechasms regulated by these glycamarkers.
Furthermorea full analysis of the skeletal muscle glycom# wrovide a deper insight

into the structuralandfunctional roles of glycans in muscle homeostasis.

1.15 Conclusions and Future Directions

A comprehensive anith-depthunderstanding of the ofecular mechanisms underlying
ischemia, inflammation, angiogenesis and masielgeneration is essential to design the
most appropriate treatment for CLThis sectionhighlights the important aspects of
glycosylation within the context afflammation, angiogenesis and muscle physiology/
regeneration, key events occurring in thehiemic diseasdé\lterations of glycosylation
regulate several aspects of these processes, mediating the bintialgaind to growth
factors, the adhesion and the migration of cells. Alteration-giy@ans,N-glycansand
GAGsis involved in these evés, siggesing that targeting specific glycan alterations
can modulatanflammation angiogenesis and regeneratiand therefore represent a
potential therapeutic strategy. Further studiesmprehensively examining the
glycosylation ofischemic tissues anghtientbiopsies are required tstablishwhether
theglycosylationcan serve as a prognosis predictor faattd a diagnostic tool for CLI.

Interdisciplinary research efforts incorporating comapional and analytical methodse
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essential teelucidatenot only the structural changes of glycosylation but also the causal

link with the ischemic insult.

1.2Biomaterials as the Key of to TissueRegenerationStrategiesfor CLI
1.2.1Current Therapeutic Approaches for CLI

CLI is a severe disease wiry limited therapeutic options for mgsatients The lack

of options forthesepatientsand the necessity to improve the efficacy of gstimhdard
therapies has guiddtie design andlevelopment ofegenerative medioe approaches

In particular, preangiogeic growth factors, nucleic acids and stem or vascular lcalis
been the focus of the emergitigerapeuticstrategiesover recent years. First tested in
preclinical modelsgrowth factorsgene therapy (plasmid encoding for growth factors or
microRNA) andstenivascularcells eitheraloneor in combination haveeached clinical
phase. 8veral clinical triad have showrtheir promising effectpromotng the formation

of new blood vesse[203-206]. However, despitene beneficial outconseeachof these

approachesontinue tgpresenta number ofranslationathallenges and limitations.

The efficacyof growth factors or recombinant proteimsstimulating angiogenesis is
limited by their short haHives. The administation of growth factoriavealsoshown
adverse effestin preclinical modeld207]. Specifically, the administration ofFGF2
caused hypotensid208], while VEGFcaused the formation of leakjood vessaland
tissue edemp209].

Nucleic aciddeliveryhas its own limitationthat includepoorin vivotransfection efficacy
andalso on the other hartke risk of developing tumor ather vascular aberrations due
to persistenbverexpression dbFs[210]. Cell therapyusingmesenchymal stem cells
marrowderived CD34+ cells, mononuclearells and endothelial cellshas been
succeskl in a number opre-clinical trials. Furthermore, clinicastudieswith autologous
stem cells have been successful in r@dythe mortality (less thab5%) [211, 212]but
not in reducinghe amputation rateemong CLI patientf213, 214]

Biomaerial systemshave emerged as a strategy to owere the limitations of the
aforementioned therapies. Indedu the last20 years biomaterials have been used as
drug delivery systemand asa supportive matrix for prolonging cell survival several

preclinical applications. In the spéc case of CL, variousbiomaterialsystemshave
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been usd both alone@ndin combinationwith growth factors, genes and cells in several
preclinical moded where they have been shown to induce tissue regeneration and
angiogenesif215-217]. However, despit@romising preclinical results, the therapeutic
efficacy of biomateriabased foICLI has yet to bealidatedat the clinical level. Indeed,
only a gelatin hydrogel/microsphareystemwith FGF has beenshown to improve
clinical outcomes in patienfg18]. This section aims to summarize and review the recent

advances in theombinatorial anshoni biomaterial based therapy for CLI application.

1.22 Biomaterials Application for CLI

The ECM is the complex thredimensional environment that surrounds cells and
orchestrates normal development and homeostasis of tissues. The ECM is canfposed
various macromolecules such as collagen, elastin and proteoglycans that not only have a
structuralfunction but also interact with the cells activating regulatory proc¢248%

Using biomaterial systenagtemps tomimic the ECM indamaged tissueECM-inspired
materials, indeedhavethepurpose tgrovidechemical, mechanical and biologicaputs

to cells, stimulating regenerative prograi@20].

In particular, the biomaterialspplied to the ischemic diseases are designed and
engineered to promote blood reperfusion by encouraging the fornwdtioew blood
vesselg[215]. As such, these biomaterials must modulate cell fate by promoting cell
adhesion and migration, and providechanical support that triggers proliferation signals

via mechanotransduction.

Several biomaterials natural and syntheti¢ protein or polysaccharideasedand n
different forms (hydrogels, microparticles, nanoparticles and nanofilbersg been
investpated for CLI applications. The natural materials tedteste beepolysaccharide
based such asginate, GAGs and chitosaas well agprotein based such amllagenand
elastin Synthetiédrecombinanimaterialshavealsobeentestedin preclinical modelf
CLI [215-217]. The abovementioned materials have been usédth alone andn
combination with growth factorgjucleic acidand cells in several preclinical model
where they have showhe abilityto inducetissue regeneration and angiogen¢2is-
217]

30



Introduction

1.22.1Biomaterials in the Combinatorial Strategy
1.22.1.1 Biomaterials and Growth FactordCytokines

Over the past decadgrowth factors/cytokines have been amdahe main protagonists

of researclefforts and clinicaltrials for CLI. Despite encouraging results, the clinical
efficacy is limited by the short hadlife in the pathologic environmef21]. Futhermore,
excess/e doses of the growth factor can generate some adverse effects. Administration
of FGF2 in high dose caused hypotension while VEGF resuitéte formation of leaky

blood vessels and edema. The combined delivery of-F@RdVEGF, instead was
associaté with a riseof diabetic retinopathy and nephropat[207]. Moreover, co-
morbidities such as diabetes and hyperlipidesaiareduce thefficacyof growth factos

[222].

The aforementioned limitations suggest thas essential to improve thefficacy of
growth factorsby prolonging their halfife and controlling the doseloading the
GFs/cytokires in the biomaterialsystemsrepresers a strategy to protedhem from
degradationto target specifically theschemic tissueandto achieve asustainedand
controlled releas¢hat is crucial in the development afmature and stable seular
network[223].

To date, a variety ofaturaly derived or syntheticnaterials have been used to deliver
growth factors in preclinical models GiLI. Alginate, chitosan, collagepoly-lactic-co-
glycolic aad (PLGA), gelatin fibrin, dextran, have been adopted in several type of
formulations- single component or hybridomposites such ds/drogels, microspheres
and nanoparticlesand in combinatiomvith awide spectrum of proangiogenic cytokines
(Table 1 2).

The most studied material system CLI preclinical modelso farhave beemydrogels
composed oélginate. When implanted into a muri@&l mode| a HGF loadegdhlginate
hydrogel resulted in increased blood perfusion and arteriole densityhat othe HGF
alone-treated group224]. The cedelivery of IGF andVEGF from the same hydrogel
not only improved the vascularization, but afsal a beneficial effect on muscle fibers
bothin mousdg223] and rabbi{225] models.
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