
Towards Lightweight and Robust Large
Scale Emergent Knowledge Processing

Title Towards Lightweight and Robust Large Scale Emergent
Knowledge Processing

Author(s) Nováček, Vít;Decker, Stefan

Publication Date 2009

Publisher Springer

Towards Lightweight and Robust Large Scale
Emergent Knowledge Processing

Vı́t Nováček and Stefan Decker

DERI, National University of Ireland, Galway
IDA Business Park, Galway, Ireland

E-mail: vit.novacek@deri.org

Abstract. We present a lightweight framework for processing uncertain
emergent knowledge that comes from multiple resources with varying
relevance. The framework is essentially RDF-compatible, but allows also
for direct representation of contextual features (e.g., provenance). We
support soft integration and robust querying of the represented content
based on well-founded notions of aggregation, similarity and ranking. A
proof-of-concept implementation is presented and evaluated within large
scale knowledge-based search in life science articles.

1 Introduction

On the Semantic Web, we often have to be able to represent and integrate
statements coming from many resources with varying relevance in a bottom-
up, emergent manner. Moreover, the statements themselves may be noisy and
uncertain (e.g., inconsistent, potentially incorrect or having an explicit certainty
degree). This is especially pertinent to a use case that has largely motivated
our work – search for expressive statements instead of mere keywords in life
science articles. More specifically, we want to allow life scientists to search for
statements like acute granulocytic leukemia : NOT is a : T-cell leukemia, or ? :
part of : immunization. The former query is supposed to confirm whether acute
granulocytic leukemia is different from T-cell leukemia by checking for similar
statements in publications. Also, the result should provide articles supporting
the query statement. The latter query is supposed to return everything that can
be a part of the immunization process, plus any related statements and links to
articles relevant to them.

Manual annotation of the publication knowledge to be exposed for such
search is practically impossible in large scale. However, one can extract the
knowledge from the article texts by ontology learning techniques [5] and link it
to existing domain ontologies in order to increase the expressivity of the rather
shallow extracted content. Such an approach still poses a couple of challenges,
though: (i) The representation framework of choice should support uncertainty,
as the extracted knowledge usually comes with explicit certainty degrees [5].
(ii) The representation should also straightforwardly support contextual fea-
tures, namely at least provenance of statements (to link them to the respective
source articles). (iii) Robust aggregation of the emergent statements based on

relevance of respective resources is necessary, since we have to integrate noisy
extracted knowledge with presumably more accurate manually designed domain
ontologies. (iv) The processed knowledge has to be accessible by means of intu-
itive (i.e., nearly natural language) query answering, since we target users with
no or little technical expertise. The query evaluation should also be approximate
in order to provide useful answers even for queries partially evaluated on a lot
of potentially noisy data.

Approaches like [13, 11, 4, 7, 8, 15, 1, 12, 2] provide particular solutions apt for
coping with the challenges separately, however, to the best of our knowledge
there is no off-the-shelf framework tackling all of them at once on a well-founded
basis. The main contribution of this paper is two-fold. Firstly, we introduce a
general notion of similarity-based lightweight semantics, integrally addressing
all the above challenges (Section 2). Secondly, Section 3 presents a particular
application of the general framework to knowledge-based search in life science
articles. Promising results of an evaluation performed with domain experts are
reported in Section 4. We discuss related approaches and conclude the paper in
Sections 5 and 6, respectively.

2 General Framework

In the following, we first informally outline the essential notions of the proposed
framework and briefly comment on their interplay. The outline is then expanded
by more rigorous and explanatory subsections 2.1 (entities and their grounding)
and 2.2 (knowledge bases, aggregation and query answering).

Central to our framework is a notion of entities that represent real and/or
conceivable objects using unique identifiers and sets of positive or negative un-
certain relations to other entities. To give an example, let us consider the d, a, c, t
identifiers representing the dog, animal, cat concepts and the type relationship,
respectively. The dog entity can be further specified by binary relations t(d, a)
and t(d, c) with a positive and negative certainty, respectively, meaning dogs are
animals different from cats. To support contextual features of entity relationships
(e.g., provenance or time-stamp), the relations may generally have arbitrary ar-
ities. A direct correspondence of sets of n-ary certainty-valued relations to n-
dimensional tensors (generalisations of the scalar, vector and matrix notions)
provides for a compact computational representation of entities. An entity E is
then represented as (e,E), i.e., its unique identifier and the respective compact
representation of uncertain relations to other entities. To ensure accessibility for
lay users, we link the somewhat abstract representation to corresponding natural
language referents via a set of grounding functions. These may map, for instance,
the dog entity to a preferred “dog” expression with a high certainty, but also
to alternative synonyms like “doggy” or “hound”, perhaps with a bit lower cer-
tainty. The other way around, a grounding would map the “mutt” word to the
dog entity in the lexical domain of animals, but to a completely different entity
in the domain of, say, humans. Thus the grounding provides a two-way bridge be-
tween the lexical (human-centric) and computational (machine-centric) aspects
of the proposed lightweight semantics. The bridge is particularly important when

answering user queries—formulated as mostly natural language statements—by
means of a query answering service dealing with abstract entity representations.

Building on the compact computational representation of entities, we in-
troduce the aggregation and querying services in order to tackle the remain-
ing challenges specified in the introduction. Entity aggregation employs linear
combinations that naturally model merging of possibly conflicting statements
coming from sources with varying relevance. For instance, imagine a statement
that dogs eat meat, coming from a highly relevant source, and an opposite, yet
relatively irrelevant statement (vegetarian dogs actually exist, however, the re-
spective rather exceptional sources are presumably less relevant). The sum of
the corresponding representations, weighed by the relative source relevance, will
result in a claim that dogs eat meat with a positive, but slightly lower certainty
(as the knowledge from more relevant source prevails in the aggregation).

Query answering makes use of two notions of entity similarity. Let us imagine
entities of dog and cow, eating and not eating meat, respectively. Evaluation of
a query for meat-eating animals first checks for entities fitting to the context
of the query, i.e., being animals and linked by an “eat” relation to meat. Both
dog and cow entities fit the query within this coarse-grained approximation of
similarity. A finer grained notion of similarity, taking the certainty degrees into
account, can be naturally coined as dual to a distance defined on the set of
entity representations. Utilising this type of similarity results into meat-eating
dog being a much more certain answer to the query than cow, which is an
animal, but does not eat meat. In more complex cases, we also sort the query
results according to their relevance employing a generalised IR measure based
on numbers of outgoing and incoming relations among stored entities.

2.1 Entities and Their Grounding

Entities First we have to formalise certainty degrees, for which we use R, i.e.,
real numbers. Positive and negative entity relationships are to be associated with
positive and negative certainty values, respectively. 0 is of special importance,
expressing absolute lack of certainty. We do not impose any restrictions on the
range of certainty values, however, particular implementations may restrict the
range to any set isomorphic with R. A convenient variant (used throughout the
paper) is (−1, 1), which makes the certainty values compatible either with a
recent approach to trust representation in RDF [7], or with general fuzzy and
probabilistic formalisms (after transforming negative certainties into negative
fuzzy/probabilistic statements). Openness of the certainty intervals reflects the
fact that nothing is absolutely certain in emergent settings. Implementations
may relax the assumption, though, and use a more traditional [−1, 1] interval.

Moving on to defining entities themselves, let I be a non-empty countable
set of unique entity identifiers (e.g., integer numbers or URIs) and n ∈ N0 a so
called rank of an entity. Rank expresses the maximal arity of relations associated
to an entity. An entity with an identifier c ∈ I and rank n = 0 can be written
down as a tuple (c, d), meaning that c merely exists (or does not exist) with
the certainty d. In practice, more expressive entities with a rank n > 0 are
required, though. An entity E with an identifier c ∈ I and rank n > 0 can be

written down as a set of tuples in the form (c1(c, c2, . . . , cn), d), where cx ∈ I for
x ∈ {1, . . . , n}, d ∈ R. The tuple elements encode a c1 relation between c and
other entities c2, . . . , cn, and the relation’s certainty, respectively. It is required
that {(ci,1, ci,2, . . . , ci,n)|(ci,1(c, ci,2, . . . , ci,n), di) ∈ E} = In, meaning that the
relations iterate through all possible identifier combinations. However, realistic
entities are obviously associated only with a relatively small finite number of
relations with a non-zero certainty. We distinguish a special zero-entity (denoted
by O in the following text), which has all certainty degrees equal to 0, thus
representing an absolutely uncertain object. O can be used namely to represent
relations with an arity lower than n by n-ary ones (filling in the respective
superfluous arguments as shown in Example 1).

Conceiving an entity as a set of relations associated with the entity’s identi-
fier is pretty intuitive. Such a form is, nonetheless, quite awkward for treating
entities as compact objects. A more compact representation is possible using a
direct correspondence between the sets of entity relations and the mathematical
structure of tensor (multi-dimensional generalisation of the scalar, vector and
matrix notions, which are tensors of ranks 0, 1, 2, respectively). Using the tensor
notation, an entity E with an identifier e and rank n can be represented as a tu-
ple E ≡ (e,E), where e ∈ I and E ∈ T (a set of all tensors of rank n on the field
R). A tensor entity representation (e,E) corresponds to a set of relation-degree
tuples {(c1(e, c2, . . . , cn),Ec1,c2,...,cn

)|(c1, c2, . . . , cn) ∈ In}, where Ec1,c2,...,cn
is

the element of E with the respective indices.

Example 1. Here we illustrate the correspondence between the two entity nota-
tions (rank 2 is used to facilitate the presentation; higher ranks are direct general-
isations of this case). Assuming B standing for http://ex.org, let I = { B#null,
B#type, B#cat, B#animal, B#eatsMeat } abbreviated as I = {⊥, t, c, a, e}, res-
pectively. B#null (or ⊥) is an identifier of the zero entity O. The cat entity E of
rank 2 with an identifier c can be described by the following set of relation-degree
tuples (omitting the ones with zero degrees): {(t(c, a), 0.99), (e(c,⊥), 0.99)}. The
binary type relation says that cats are a type of animal, while the unary eatsMeat
relation says that cats eat meat (both relations have a positive certainty). The
respective tensor representation is E = (c,E), where E is the following matrix:

a ⊥
t 0.99 0

e 0 0.99

.

Note that we omit (also in the following examples) rows and columns with all
degrees equal to zero when they are not required for facilitating the presentation.

Grounding Let L be a non-empty countable set of language expressions (e.g.,
words upon an alphabet). Entities are grounded in a language via a so called
entity grounding mapping gind : I → (L → R). gind(x) are total functions
that assign certainty values to each element from L. The functions support the
synonymy and antonymy lexical phenomenons via positive and negative certainty
assignments, respectively. Going the other way around, language expressions are

mapped to entity identifiers via a so called unique entity identifier assignment
glan : L × I → I. The first argument of glan is an expression to be mapped to
an entity identifier, while the second argument is a so called lexical domain –
an entity providing a disambiguation context, catering for correct resolution of
homonymous terms. Eventually, we need to ground the dimensions of the tensor
representation (or argument positions in the relation-degree notation) to concept
identifiers. This is done using a so called dimension grounding mapping gdim :
{1, . . . , n} → I, assigning an entity identifier to each entity index dimension.

Example 2. Assuming B standing for http://ex.org, let us extend the I set
from Example 1 to I = { B#null, B#type, B#cat, B#animal, B#eatsMeat,
B#isVeggie, B#predicate, B#object, B#human, B#gld, B#sissy}. Furthermore,
let L = {null entity, type, is a, cat, animal, pussycat, eatsMeat, isVeggie, meatEat-
ing, predicate, object, human, general lexical domain}. Let us consider functions
µ1, . . . , µ11 assigned by a sample entity grounding gind to the elements of I (in the
order given in the beginning of the example). All the functions assign 0 to most el-
ements of L, with the following exceptions: (i) µ1(x) = 0.99 for x ∈ {null entity};
(ii) µ2(x) = 0.99 for x ∈ {type, is a}; (iii) µ3(x) = 0.99 for x ∈ {cat}, µ3(x) = 0.8
for x ∈ {pussycat}; (iv) µ4(x) = 0.99 for x ∈ {animal}; (v) µ5(x) = 0.99 for
x ∈ {eatsMeat, meatEating}, µ5(x) = −0.99 for x ∈ {isVeggie}; (vi) µ6(x) = 0.99
for x ∈ {isVeggie}, µ6(x) = −0.99 for x ∈ {eatsMeat, meatEating}; (vii) µ7(x) =
0.99 for x ∈ {predicate}; (viii) µ8(x) = 0.99 for x ∈ {object}; (ix) µ9(x) = 0.99 for
x ∈ {human}; (x) µ10(x) = 0.99 for x ∈ {general lexical domain}; (xi) µ11(x) =
0.99 for x ∈ {pussycat}. Regarding the unique identifier assignment, the only
ambiguous lexical expression is pussycat: glan(pussycat, B#human) = B#sissy,
glan(pussycat, B#animal) = B#cat. All the other lexical expressions have ob-
vious mappings to identifiers under the general lexical domain. Eventually, the
dimension mapping gdim can be defined as gdim(1) = B#predicate, gdim(2) =
B#object. This roughly follows the RDF terminology in the sense that the first
and second dimension of the tensor representation (i.e., the matrix row and
column) correspond to predicate and object identifiers, respectively.

2.2 Knowledge Bases, Aggregation and Query Answering

Knowledge base of rank n is a tuple (E , n, I, L,G). I, L are the sets of entity
identifiers and language expressions as introduced before. E is a set of entities
(e,E) such that e ∈ I and E ∈ T , where T is a set of all tensors of rank n defined
on R. G is a set of particular grounding mappings gind, glan, gdim. Furthermore, a
knowledge base must satisfy certain restrictions. Let ind : E → I, ind((e,E)) = e,
rep : E → T, rep((e,E)) = E be projections mapping entities in a knowledge base
to their identifiers and tensor representations, respectively. Then it is required
that ind(E) = ind(F) if and only if rep(E) = rep(F) for every E,F ∈ E
(consequently, E = F iff ind(E) = ind(F) or rep(E) = rep(F)). Also, the ind
projection has to be a bijection. Thus, every entity has a unique identifier and
each identifier maps to an entity in a particular knowledge base.

As knowledge is often inherently context-dependent, we have to introduce an
appropriate notion of context in our representation. We do so using so called

contextual scopes, which are non-empty sets S ⊆ In for a knowledge base
(E , n, I, L,G). Briefly put, contextual scopes divide E into classes of entities as-
sociated with particular relations of non-zero certainty in direct correspondence
to the elements of S. Each non-zero entity fits into at least one contextual scope.
We refer to the minimal contextual scope fully covering a non-zero entity E by
scp : E \O → 2In

, scp(E) = {(v1, . . . , vn)|(v1, . . . , vn) ∈ In∧ rep(E)v1,...,vn
6= 0}.

It is simply a set of indices of all non-zero elements in the respective entity rep-
resentation. We define fitness of a non-zero entity E w.r.t. a general contextual
scope S as fit : E \ O × 2In → [0, 1], fit(E,S) = max(|scp(E)∩S|

|S| , |scp(E)∩S|
|scp(E)|).

Maximal fit of 1 is achieved if either all non-zero element indices of the entity
are covered by the contextual scope, or if all elements of the contextual scope
are covered by the entity’s non-zero elements. Minimal fit of 0 is achieved if no
index of any non-zero entity element appears in the contextual scope.

Example 3. In order to illustrate practical treatment of contextual scopes, let
us extend the I set from previous examples to I = { B#null, B#type, B#cat,
B#animal, B#eatsMeat, B#dog, B#feline, B#canine}, abbreviated as I = {⊥
, t, c, a, e, d, f, cn}, respectively. Let E and F be cat and dog entities, such that

rep(E) =

a f cn ⊥
t 0.99 0.99 0 0

e 0 0 0 0.99

and rep(F) =

a f cn ⊥
t 0.99 0 0.99 0

e 0 0 0 0.99

.

Contextual scopes corresponding to felines and canines can be defined as S1 =
{(t, f)}, S2 = {(t, cn)}, respectively. Similarly, feline and canine animals cor-
respond to contextual scopes S3 = {(t, a), (t, f)}, S4 = {(t, a), (t, cn)}. Consis-
tently with common sense, fit(E,S1) = fit(F, S2) = fit(E,S3) = fit(F, S4) =
1, meaning that cats are in the context of felines and feline animals (similarly
for canine dogs). Also, fit(E,S2) = fit(F, S1) = 0 meaning that cats do not
fit in the context of canines and vice versa for dogs. However, fit(E,S4) =
fit(F, S3) = 0.5, meaning that cats share certain properties (i.e., relations) with
canine animals (i.e., being a type of animal), and vice versa for dogs.

In the following, we will need an auxiliary operator for entity trimming ac-
cording to a contextual scope. It is defined as τ : T×2In → T, τ(E, S) = F, where
Fi1,...,in

= Ei1,...,in
for all (i1, . . . , in) ∈ S, otherwise Fi1,...,in

= 0. The trimming
cuts all the relations not “belonging” to a contextual scope off an entity, ren-
dering their certainty zero. Apparently, τ(rep(E), S) = rep(E) iff scp(E) ⊆ S.
The operator is to be used when one needs to focus only on particular features
of entities within their computational processing (e.g., aggregation or querying).

Entity Aggregation Let +, · be operations of vector addition and scalar mul-
tiplication defined on T and R (e.g., element-wise tensor addition and scalar
multiplication as a generalisation of the respective matrix operations). Then T
forms a vector space and as such can provide a natural framework for weighed
entity aggregation by means of linear combinations. An aggregation of entities
E1, . . . , Ek with rank n is a function agg : 2T → T operating on the respective

tensor representations:

agg({rep(E1), . . . , rep(Ek)}) =
∑
v∈V

∑
j∈J

rv,jτ(rep(Ej), {v}),

where V = {(i1, . . . , in)|∃x.x ∈ {1, . . . , k} ∧ rep(Ex)i1,...,in
6= 0}, J = {x|x ∈

{1, . . . , k} ∧ rep(Ex)v1,...,vn
6= 0}, such that (v1, . . . , vn) = v. rv,j ∈ R+

0 are
weights reflecting the relevance of the particular summation elements and τ is
the entity trimming operator defined before. The generic aggregation definition
flexibly covers intuitively applicable aggregation mechanisms, as shown in the
following example.

Example 4. Assuming the I set from the previous examples, imagine two differ-
ent dog entity representations rep(E1), rep(E2), such that

rep(E1) =

a ⊥
t 0.99 0

e 0 −0.5

and rep(E2) =

a ⊥
t 0.99 0

e 0 0.99

.

Let the entity representations come from sources with relevance weights 0.2 and
1, respectively (the source conceiving a dog as a kind of vegetarian having much
lower, although non-zero relevance). agg({rep(E1), rep(E2)}) then expands as:

r(a,t),1

a ⊥
t 0.99 0

e 0 0

+r(a,t),2

a ⊥
t 0.99 0

e 0 0

+r(e,⊥),1

a ⊥
t 0 0

e 0 −0.5

+r(e,⊥),2

a ⊥
t 0 0

e 0 0.99

.

Various mechanisms of aggregation can be achieved by setting the r(a,t),1, r(a,t),2,
r(e,⊥),1, r(e,⊥),2 weights accordingly. E.g., r(a,t),1 = r(a,t),2 = 0.5, r(e,⊥),1 =
0.2/1.2, r(e,⊥),2 = 1/1.2 keeps equal elements unchanged, however, computes
weighted mean for conflicting certainty values with the source relevances as par-
ticular weights, thus letting the statement from a more relevant source prevail.

Query Answering We support soft anytime retrieval of entities from know-
ledge bases according to their similarity to so called primitive queries Q, with
the results sorted by their relevance. Primitive queries are simply entities with
an unknown identifier (i.e., variable). First approximation of the similarity is the
fitness fit(E, scp(Q)). Assuming a knowledge base (E , n, I, L,G), entities E ∈ E
with fit(E, scp(Q)) > 0 are plausible (possibly partial) answers for the query Q.

A more fine grained notion of similarity can be naturally defined using a
metric d : T 2 → R on the set T of entity representations. d can be any function
satisfying the following properties for all E,F,G ∈ T : (i) positive definiteness –
d(E,F) ≥ 0, d(E,F) = 0 if and only if E = F; (ii) symmetry – d(E,F) = d(F,E);
(iii) triangle inequality – d(E,G) ≤ d(E,F) + d(F,G). Similarity is conceptu-
ally dual to distance (i.e., metric). Therefore we can define similarity of entities
E,F ∈ E as a a function sim : E2 → (0, 1], sim(E,F) = 1

1+d(rep(E),rep(F)) . The
duality of sim and d is ensured by their apparent inverse proportionality. More-
over, sim has the following intuitively expected properties: sim(E,E) = 1 and
limx→∞ sim(E,F) = 0, where x = d(rep(E), rep(F)).

Apart of similarity of candidate answers to queries, we establish the notion
of entity relevance, which can be effectively used for ranking query results. In-
formally, relevance of an entity E in our framework is given by the number and
certainty of relations that are associated to it, but also by the number and cer-
tainty of relations that reference it. Such a measure tells us how important E is
w.r.t. determining the meaning of other entities. This is directly related to the
hubs and authorities algorithm designed for ranking of web pages [9]. We only
need to generalise it to support n-ary links with arbitrarily weighed relations
and argument positions. The generalised hub measure of entities in a knowledge
base (E , n, I, L,G) is recursively defined as h : E → R+

0 such that:

h(E) =
∑

(u1,...,un)∈scp(E)

|rep(E)u1,...,un
|warg(1)wrel(u1)

n∑
k=2

warg(k)a(F),

where F = ind−1(uk) is the entity referenced in the respective relation. Similarly,
the generalised authority measure is defined as a : E → R+

0 , such that:

a(E) =
∑
F∈R

∑
(u1,...,un)∈V

|rep(F)u1,...,un |warg(1)wrel(u1)h(F)
∑
x∈Y

warg(x),

where R = {G|∃G.rep(G)u1,...,un
6= 0 ∧

∨n
i=1 ind(E) = ui} is a set of all entities

referencing E, V = {(v1, . . . , vn)|rep(F)v1,...,vn
6= 0∧ind(E) ∈ {v1, . . . , vn}} and

Y = {y|y ∈ {u1, . . . , un} ∧ y = ind(E)}. wrel : I → R+
0 and warg : {1, . . . , n} →

R+
0 are weights of particular relations and relation argument positions (generally

including also the “zeroth” argument position, i.e., the relation identifier itself).
Using the generalised measures, we can compute the hub and authority scores for
entities E ∈ E with the iterative algorithm given in [9] (normalising the scores in
each iteration to ensure convergence). The relevance of an entity E is then defined
as rel : E → R+

0 , rel(E) = m(h(E), a(E)), where m : R2 → R is any aggregation
function such that for all x, y ∈ R+

0 , min(x, y) ≤ m(x, y) ≤ max(x, y). Examples
are min,max, or an arithmetic mean.

Having introduced all the necessary notions, we can finally specify the set of
answers to a query Q ∈ E w.r.t. a knowledge base (E , n, I, L,G) as a function
ans : E → 2E such that ans(Q) = {s1A1, . . . , skAk}. A1, . . . , Ak ∈ E and si =
sim(τ(rep(Ai), scp(Q)), rep(Q)) for i ∈ {1, . . . , k}. Note that to simplify the
notation, we assume that sA = s(a,A) = (a, sA) for a multiplication of an
entity (i.e., an identifier-tensor tuple) by a scalar value. It is required that fit(A1,
scp(Q)) ≥ · · · ≥ fit(Ak, scp(Q)) > 0. Moreover, every sequence si1Ai1 , . . . , sil

Ail

such that i1, . . . , il ∈ {1, . . . , k}, i1 ≤ · · · ≤ il and fit(Ai1 , scp(Q)) = · · · =
fit(Ail

, scp(Q)) must be lexicographically ordered according to the respective
(sx, rel(Ax)) measures. Thus, ans(Q) is a set of entities from E multiplied by
their actual similarity to Q, taking only the minimal contextual scope covered by
Q—i.e., scp(Q)—into account, though. The answers also must be ordered first
regarding the fitness measure w.r.t. scp(Q), then according to their similarity to
the query (in the query’s context), and finally according to their relevance.

Example 5. In the following, we employ similarity based on particular metric
d(E,F) = 1

|V |
∑

(u1,...,un)∈V |Eu1,...,un
− Fu1,...,un

|, where V = scp(E) ∪ scp(F).
The metric simply sums up absolute values of differences across the representa-
tion indices referring to a non-zero value in E or in F, normalising the result by
the size of the summation range. The respective similarity 1

1+d(rep(E),rep(F)) is
essentially a very simple formalisation of the contrast model [14] (more sophis-
ticated alternatives may, e.g., put specific weights on particular elements within
the metric computation to reflect intensity and context in the sense of [14]).

Consider now the particular cat and dog entities E and F as given in Ex-
ample 3 and a query Q asking for canine animals. The set of answers ans(Q)
then equals {A1, A2}, where

rep(Q) =
a cn

t 0.99 0.99
, A1 = (d,

a cn ⊥
t 0.99 0.99 0

e 0 0 0.99

), A2 = (c,

a f ⊥
t 0.497 0.497 0

e 0 0 0.497

).

When aggregating the hub and authority values using the max function and set-
ting all weights to 1, except for the unary e relation weight set to 0, the relevance
of the cat, dog, animal, feline, canine entities is 0.5, 0.5, 0.5, 0.25, 0.25,
respectively. However, apparently we do not need relevance in this simple exam-
ple, as the fitness and similarity are enough to sort the results.

Raw sets of answers might not be particularly interesting for users in practi-
cal query-answering application scenarios. Therefore the implementations of the
proposed framework may present just the corresponding ordered list of the an-
swer entity identifiers (or their appropriate lexical labels). To provide additional
information, such results may be associated with an aggregation of the respective
fitness and similarity values, such as in the following: {dog : 1, cat : 0.5} (using
the corresponding lexical labels and min for the aggregation). Such an answer
contains all the intuitively expected information – dogs are canine animals, while
cats are animals, however, not canines. Therefore cats are present in the result,
too, but with a lower explicit relevance.

3 Particular Implementation and Deployment

We have implemented a proof-of-concept prototype of the theoretical principles
introduced so far, called EUREEKA (may be read as an acronym for Efficient,
Universal, Reasonable and Easy-to-use Emergent Knowledge Acquisition). As
mentioned in Section 1, the development and current deployment of the proto-
type has been motivated by the use case of knowledge-based search in life science
articles. In order to realise this in an economically feasible way, we have to extract
the respective knowledge from the texts, represent it in an appropriate manner,
integrate it and expose it to the users in a robust and meaningful way. To address
these tasks, we have recently delivered CORAAL (cf. http://coraal.deri.ie:
8080/coraal/), which is a comprehensive life science publication search engine
deployed on the data provided by Elsevier within their Grand Challenge con-
test (cf. http://www.elseviergrandchallenge.com/). EUREEKA forms the

engine’s crucial back-end part, catering for the representation, integration and
exposure tasks, thus enabling the knowledge-based search functionalities.

For the initial knowledge extraction in CORAAL, we used a NLP-based
heuristics stemming from [10, 16] in order to process chunk-parsed texts into
subject-predicate-object-score quads. The scores were derived from absolute and
document frequencies of subject/object/predicate terms aggregated with sub-
ject/object co-occurrence measures. If a relation’s score is not available for any
reason (e.g., when importing legacy knowledge from crisp resources instead of
extracting it from text), we simply set it to 1 (or −1) in the implementation.
The extracted quads encoded three major types of ontological relations between
concepts: (i) taxonomical—type or same as—relationships; (ii) concept difference
(i.e., negative type relationships); and (iii) “facet” relations derived from verb
frames in the input texts (e.g., has part, involves or occurs in). We imposed a
taxonomy on the latter, considering the head verb of the respective phrase as
a more generic relation (e.g., involves expression of was assumed to be a type
of involves). Also, several artificial relation types were introduced to specify the
semantics of some most frequent relations. Namely, (positive) type was consid-
ered transitive and anti-symmetric, and same as is set transitive and symmetric.
Similarly, part of was assumed transitive and being inverse of has part.

After the initial knowledge extraction in CORAAL, EUREEKA comes into
play in order to integrate the emergent statements, link them to precise domain
thesauri and expose them to users via intuitive approximate querying. The re-
mainder of this section outlines the most important features of the EUREEKA
implementation that enabled its efficient deployment in CORAAL.

3.1 Relational Storage of Knowledge Bases

For low-level storage, we chose to employ a relational database, since it is a
state of the art technology for scalable data management, which in addition
allows for quite straightforward implementation of our framework. Considering
a knowledge base (E , n, I, L,G), we can represent G, E as two relational tables
grounding and entities. The former serves for mapping of natural language
inputs to unique internal identifiers and vice versa, while the latter supports the
entity storage and operations according to Section 2.2.

The grounding table consists of the columns lemma, identifier, scope,
certainty of VARCHAR, INTEGER, INTEGER, FLOAT types, and of indices ls =
(lemma,scope), ic = (identifier,certainty). The sets I, L are given by
the identifier, lemma columns, respectively (we store terms in their lemma-
tised, i.e., canonical lexical form). The table indices allow for a convenient and
efficient implementation of the gind and glan mappings in G via the respective
SELECT operations. Note that inclusion of certainty into ic allows for direct
access to, e.g., lexical expressions attached to an identifier with maximal positive
or negative certainty. This retrieves an entity’s preferred synonyms or antonyms,
respectively. To save space, we use integer entity identifiers, however, these can be
directly mapped to a respective URI scheme if required by an application. In the
current deployment of EUREEKA, the grounding table is filled in according to

the terms (and possibly their synonyms) coming from two sources: (i) EMTREE
and NCI life science thesauri (cf. http://www.embase.com/emtree/, http://
nciterms.nci.nih.gov, respectively); (ii) statements extracted from the Else-
vier life science articles. The only lexical domains we currently distinguish are
those corresponding to auxiliary relation and generic (i.e., non-relation) entities.

The entities table stores particular entities. These can be expressed as
sets of relations associated with the respective certainty, as introduced in the
beginning of Section 2. Such a notation can be directly transformed into a set
of rows in a relational database table. However, a direct transformation of n-ary
relations may be inadequate if n is not set firmly and/or if we have to store many
relations with arities lower than n. These situations lead either to problems with
maintenance, or to wasted space in the table.

Nevertheless, we process subject-predicate-object triples, all of which have a
provenance (either an article, or a domain thesaurus), so we can explicitly rep-
resent the respective ternary relations in the entities table without wasting
any space. For the representation of possible additional relation arities (such as
location or other types of context), we associate each row in the entities table
with a unique statement identifier stid. Then we can represent, e.g., quaternary
relations in the form bindsTo(drugX,proteinY,docID,bindingSiteZ) as a ternary
relation at(stidi,bindingSiteZ,docID), assuming at grounding the fourth “loca-
tion” argument. stidi is a statement identifier of bindsTo(drugX,proteinY,docID).
This procedure can be obviously generalised to arbitrary arities.

Following the design considerations, the entities table consists of columns
stid, predicate, subject, object, provenance, certainty. All columns are
INTEGER, except for the latter one, which is FLOAT. Provenance is modelled as
a special entity linked to an article ID, title, text, etc. Besides the primary key
(stid), indices on (subject,predicate,object), (subject,object), (ob-
ject,predicate), (predicate,object) are defined. Explicit querying for pro-
venance is not necessary in our use case (we only need to retrieve provenance
as a function of particular statements), therefore we do not maintain respective
indices. An entity E ∈ E directly corresponds to rows with subject equal to
ind(E) and to rows with subject referencing the respective stid values. The
corresponding tensor entity representation rep(E) can be directly constructed
from the content of the rows as a multidimensional array of floats, with the
necessary tensor-based operations implemented on the array data structure.

Regarding the particular implementation of entity ranking, we employ warg =
1 for predicate, object and warg = 0 for all other arguments (results in rather
traditional binary hub and authority score computation). The relation weighing
function makes use of the frequency of particular relation instances (i.e., number
of statements having the relation identifier as a predicate): wrel(r) = 1

ln(e+f(r)−L)

if f(r) ≥ L, wrel(r) = 0 otherwise, where f(r) is the absolute frequency of r.
Relations with frequency below the limit are not taken into account at all. The
heuristic weighing is designed to reduce the influence of very frequent, but rather
generic relations (e.g., type), in favour of less frequent, but potentially significant
ones (e.g., involved in). The L limit (set to 25 in the current implementation)

serves for cutting accidental noise off the result. For the aggregation of the
h(E), a(E) hub and authority scores into rel(E), we use the arithmetic mean.

3.2 Aggregating and Accessing the Emergent Knowledge

EUREEKA can smoothly merge facts extracted from different resources. This is
done via decomposition of each entity into entities containing subject-predicate-
object statements with equal provenance. The decomposed entities with same
identifiers are merged using the agg operation into single entities with respec-
tive compound provenances. agg is implemented as weighted arithmetic mean
(similarly to Example 4), with relevances 1, 0.2 for the thesauri and article pro-
venance, respectively. This ensures significantly higher relevance of the manually
designed thesauri in case of conflict with the automatically extracted knowledge.

In order to access the aggregated emergent knowledge, we implemented a
service evaluating simple conjunctive queries with negation (for the query lan-
guage specification, see http://smile.deri.ie/projects/egc/quickstart).
The query evaluation and presentation of the answers is implemented essentially
following Example 51. In addition to the ranking of the answer entities, state-
ments associated to an entity are sorted according to the relevance of their argu-
ments in descending order. Example queries and selected top answer statements
are (answer certainties in brackets): Q: ? : type : breast cancer cystosarcoma
phylloides TYPE breast cancer (1); Q: rapid antigen testing : part of : ? AND
? : type : clinical study dicom study USE protein info (0.8), initial study
INVOLVED patients (0.9). The examples abstract from the result provenance,
however, full-fledged presentation of answers to the above or any other queries
can be tried live with CORAAL at http://coraal.deri.ie:8080/coraal/,
using the Knowledge search tab or the guided query builder.

Currently the main means for accessing the EUREEKA deployment is the
intuitive user-centric front-end in CORAAL. Applications may get RDF cor-
responding to the results presented in CORAAL from its Exhibit presentation
layer, however, this is rather awkward. Therefore we are working on an API al-
lowing for import and processing of arbitrary texts and RDF data in the N3 no-
tation (cf. http://www.w3.org/DesignIssues/Notation3). The processed data
are to be exported as N3 RDF, with the certainties and provenance represented
according to the W3C note at http://www.w3.org/TR/swbp-n-aryRelations/.

4 Evaluation with Sample Users

In the CORAAL deployment, EUREEKA provides access to more than 15 mil-
lion statements about ca. 350, 000 unique entities that are referred to by about
1 The translation from the query language into entity representations is quite straight-

forward – positive and negative crisp query statements form triple relations that are
associated with maximal and minimal certainty values, respectively. Statements with
variables in the “object” position are inverted, so that the query can be translated
as a single entity. The answer candidates and their fitness measures are then com-
puted on the top of (possibly nested for inverted statements) SELECT queries on the
entities table, with WHERE conditions corresponding to the query statements.

620, 000 natural language terms. The knowledge base is covering ca. 11, 700
Elsevier articles mostly related to cancer research and treatment. With an as-
sistance of a three-member domain expert evaluation committee, we assessed
issues deemed to be most important by the committee regarding applicability
of the framework: (i) ease of use, real-time response; (ii) quality of answers to
queries (users want to have as many good results entailed by the articles and
thesauri as possible); (iii) appropriateness of the result ranking (users want to
find the relevant results on the top). Note that we do not discuss evaluation of
the document retrieval here, since it is related to the CORAAL search engine as
such, but not to the main contribution of this paper (presentation of the general
emergent knowledge processing framework).

Ease of use was addressed by the simple queries close to natural language,
guided query builder and faceted browsing (supported by Exhibit, cf. http:
//simile-widgets.org/exhibit/), all offered within the EUREEKA front-end
in CORAAL. The response is actually not an issue – results are presented within
units of seconds in CORAAL (up to 90% of the lag owing to the HTML ren-
dering overhead, not to the query processing itself). The two remaining issues
were mapped to these tasks: (i) assessing correctness (i.e., precision) and com-
pleteness (i.e., recall) of variable instances provided within answers to significant
queries; (ii) assessing number of relevant statements as a function of their rank
in answers. The latter task was evaluated using significant entities as queries
(such results in effect provide statements assumed to be related to the query
entities based on the fitness, similarity and relevance in direct correspondence
to raw results in Example 5).The significance of queries and entities to be used
for the evaluation was determined as follows. First we picked 100 random entity
names and generated 100 random queries based on the extracted content. We let
the evaluation committee assess the significance of respective concept and state-
ment queries by 1-5 marks (best to worst). We used the following best-scoring
queries—Q1 : ? : type : breast cancer; Q2 : ? : part of : immunization; Q3 : ? :
NOT type : chronic neutrophilic leukemia; Q4 : rapid antigen testing : part of : ?
AND ? : type : clinical study; Q5 : ? : as : complementary method AND ? : NOT
type : polymerase chain reaction—and entities—E1 : myelodysplastic syndrome;
E2 : p53; E3 : BAC clones; E4 : primary cilia; E5 : colorectal cancer.

For a base-line comparison, we employed the open source edition of OpenLink
Virtuoso (cf. http://tinyurl.com/cf8ga2), a triple store with database back-
end supporting rule-based RDFS inference and querying2. The content fed to
EUREEKA was transformed to crisp RDFS, omitting the unsupported negative
statements and provenance arguments before import to the base-line. EURE-
2 Alternatives [13, 7] capable of either arbitrary meta-knowledge, or explicit trust rep-

resentation in RDF were considered, too. However, the respective implementations
allow neither for soft aggregation of emergent entities, nor for inherent exploitation
of certainty in approximate answering of queries close to natural language. They can
only expose the certainty and/or meta-knowledge via extended SPARQL queries.
Therefore their capabilities are essentially equal to the “plain” Virtuoso RDF store
base-line regarding our use case, while Virtuoso handles the relatively large amount
of data more efficiently, presumably due to more mature data management engine.

EKA queries were mapped to statements with unique entity identifiers as per
the grounding table and then translated to respective SPARQL equivalents to
be executed using the base-line.

Approach
Correctness and completeness Relevance per answer ranking
P R F Pnn Rnn Fnn 1-10 11-50 51-100 101-200 201-. . .

EUREEKA 0.719 0.583 0.586 0.532 0.305 0.310 0.780 0.668 0.430 0.227 0.091
BASE 0.169 0.053 0.067 0.281 0.088 0.111 0.300 0.229 0.293 0.172 0.188

Table 1. Summary of the results

The evaluation results are summed up in Table 1. P , R, F columns contain
precision, recall and F-measure (∼ 2(PR)

P+R), respectively, averaged across the re-
sults of all evaluated queries. Xnn, X ∈ {P,R, F} relate to average results of
non-negative queries only (Q1, Q2, Q4). Particular P,R values were computed
as P = cr

ar
, R = cr

ca
, where cr, ar is a number of relevant and all answer entities

returned, respectively. ca is the number of all entities relevant to the query, as en-
tailed by the documents in the CORAAL corpus (determined by the evaluation
committee by means of manual analysis of full-text search results related to the
entities occurring in the evaluated queries). The columns in the right hand part
of Table 1 contain average values sr

sz , where sr, sz is the number of relevant and
all statements in a given ranking range, respectively. The average goes across
results corresponding to E1−5 query entities. The relevance was determined by
unequivocal agreement of the evaluation committee. Results with certainty lower
than 0.5 were disregarded (i.e., a statement was considered as a false positive iff
it was deemed irrelevant and its absolute certainty value was 0.5 or more).

Regarding correctness and completeness, our approach offers almost three-
times better results in terms of F-measure than the base-line. That holds for the
negation-free queries supported by both frameworks. Obviously, the difference is
even bigger for generic queries having no base-line results in two out of five cases.
The increase in EUREEKA’s precision was directly due to its two novel features
unsupported by the base-line: (i) relevance-based aggregation of the initially
extracted input; (ii) explicitly presented certainty of the results allowing for
disregarding presumably uncertain ones. The increase in recall was caused by
the approximate query evaluation that included also some correct results from
answers with fitness lower than 1 (similar behaviour is not directly supported
by the base-line). The relevance of EUREEKA answers is a clearly decreasing
function of the ranking. However, no similar pattern can be seen for the base-line.

The absolute EUREEKA results may still be considered rather poor (F-
measure around 0.3), but the evaluation committee unequivocally considered the
ability of EUREEKA to perform purely automatically as an acceptable trade-off
for the presence of some noise in the not-entirely-complete results. In conclusion,
the evaluation with sample users confirmed that the innovative principles of the
proposed approach lead to a better applicability in the current use case, when
compared to a base-line state of the art solution.

5 Related Work

An implemented approach [4] generalising Description Logics in order to sup-
port vagueness as one form of uncertainty exists, however, it does not allow

for straightforward representation of contextual features. Moreover, logics-based
approaches are usually not able to infer many meaningful conclusions from the
rather sparse and noisy emergent inputs [3], which renders the querying in our
use case practically unachievable if based on the logical inference.

The works [13, 7] propose generic framework for representing contextual fea-
tures like certainty or provenance in RDF. These features are considered rather
as “annotations” of RDF triples and thus can be merely queried for. It is im-
possible to use the certainty as a first class citizen for robust entity integration
and/or query answering, unless one builds an ad hoc application tackling that
on the top of either [13], or [7]. Similarity-based query post-processing with im-
precision support is tackled by [8], however, the suggested iSPARQL framework
handles uncertainty merely concerning query result filtering, disregarding a pri-
ori imprecise knowledge. This makes it rather inapplicable both to partial query
evaluation and processing of the emergent uncertain knowledge before the ac-
tual querying. The work [11] extends the crisp RDF semantics by fuzzy degrees,
but supports neither robust querying nor integration capabilities, nor context
representation. Integration of RDF ontologies based on graph theory is tackled
in [15], but incorporation of certainty degrees and contextual features into the
presented method is non-trivial, since [15] is based on crisp binary relations.

Papers [1, 12] research techniques for ranking ontology concepts and any-
time RDF query answering, respectively. The former approach is applicable for
relevance-based sorting of query results, while the latter is apt for general robust,
approximate and scalable query answering. However, both [1, 12] lack explicit
support for uncertainty and contextual features.

All the approaches discussed so far also neglect as clearly defined and uni-
versal interface between the lexical and computational aspects of semantics as
proposed in our approach. The Textrunner framework [2] provides an expressive
search service based on natural language, which is very similar to the deployment
of our framework in CORAAL. However, the framework provides neither for ex-
tracted knowledge integration, nor for complex (i.e., conjunctive or negative)
querying, lacking an appropriate underlying computational semantics model.

Conceptual spaces [6], a geometrical formalisation of meaning, shares some
similarities with our approach, namely uncertainty-aware, non-logical nature of
representation, and multi-dimensionality of concept features. However, exploita-
tion of emergent relational statements is not particularly straightforward within
the framework, since it is tailored primarily to non-symbolic connectionist input.
Moreover, there is neither a standardised implementation, nor a universal and
intuitively applicable querying mechanism available for conceptual spaces.

6 Conclusions and Future Work

We have introduced a framework that addresses all the challenges specified in
Section 1 on a well-founded basis. The framework has been implemented in the
form of a respective EUREEKA prototype. We applied and evaluated the pro-
totype within a practical use case of knowledge-based life science publication
search. Our approach is novel and promising regarding practical emergent kno-

wledge processing, which has been proven not only by the results presented here,
but also by our successful participation in the Elsevier Grand Challenge contest
(cf. http://www.elseviergrandchallenge.com/).

In the near future, we are going to extend the user-centric query language
by contexts and release the extended EUREEKA implementation as an open
source module. In longer term, we have to investigate import of more complex
ontologies into EUREEKA – so far we have covered only rather simple RDFS
semantics of life science thesauri. Last but not least, we intend to provide means
for distributed implementation of the principles introduced here in order to scale
the framework up to arbitrarily large data.

Acknowledgments We have been supported by the ‘Ĺıon II’ project funded
by SFI under Grant No. SFI/08/CE/I1380. Deployment of EUREEKA within
CORAAL would not be possible without the great work of Tudor Groza and
much appreciated senior support of Siegfried Handschuh. Finally, we are very
grateful to our evaluators and testers: Doug Foxvog, Peter Gréll, MD, Miloš
Holánek, MD, Matthias Samwald, Holger Stenzhorn and Jǐŕı Vyskočil, MD.

References

1. H. Alani, C. Brewster, and N. Shadbolt. Ranking ontologies with AKTiveRank.
In Proceedings of ISWC’06, 2006.

2. M. Banko and O. Etzioni. The tradeoffs between open and traditional relation
extraction. In Proceedings of ACL-08: HLT, pages 28–36. ACL, 2008.

3. S. Bechhofer et al. Tackling the ontology acquisition bottleneck: An experiment in
ontology re-engineering, 2003. At http://tinyurl.com/96w7ms, Apr’08.

4. F. Bobillo and U. Straccia. fuzzyDL: An expressive fuzzy description logic reasoner.
In In Proceedings of FUZZ-08, 2008.

5. P. Buitelaar and P. Cimiano. Ontology Learning and Population. IOS Press, 2008.
6. P. Gärdenfors. Conceptual Spaces: The Geometry of Thought. MIT Press, 2000.
7. O. Hartig. Querying Trust in RDF Data with tSPARQL. In ESWC’09, 2009.
8. C. Kiefer, A. Bernstein, and M. Stocker. The fundamentals of isparql: A virtual

triple approach for similarity-based semantic web tasks. In ISWC/ASWC, 2007.
9. J. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of the

ACM, 46(5), 1999.
10. A. Maedche and S. Staab. Discovering conceptual relations from text. In Proceed-

ings of ECAI 2000. IOS Press, 2000.
11. M. Mazzieri. A fuzzy RDF semantics to represent trust metadata. In Proceedings

of SWAP’04, 2004.
12. E. Oren, C. Guéret, and S. Schlobach. Anytime query answering in RDF through

evolutionary algorithms. In Proceedings of ISWC’08, 2008.
13. B. Schueler, S. Sizov, S. Staab, and D. T. Tran. Querying for meta knowledge. In

Proceedings of WWW 2008. ACM, 2008.
14. A. Tversky. Features of similarity. Psychological Review, 84(2):327–352, 1977.
15. O. Udrea, Y. Deng, E. Ruckhaus, and V. S. Subrahmanian. A graph theoretical

foundation for integrating RDF ontologies. In Proceedings of AAAI’05, 2005.
16. J. Voelker, D. Vrandecic, Y. Sure, and A. Hotho. Learning disjointness. In Pro-

ceedings of ESWC’07. Springer, 2007.

