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Abstract 

The co-crystallization of caffeine and urea was monitored and analyzed using infrared 

spectroscopy, Raman microscopy, scanning electron microscopy, differential scanning 

calorimetry and X-ray diffraction. The caffeine-urea co-crystal was shown to form 

spontaneously over several weeks under low energy mixing of the solids at room temperature 

and low relative humidity (<30%). Pre-milling the two coformers separately accelerated the 

process and the co-crystal formation could be detected within three days. When caffeine and 

urea were milled together, the physical mixture that was confirmed by X-ray powder 

diffraction immediately after milling transformed to the co-crystal within hours of storage at 

room temperature and 30 % relative humidity. The scanning electron microscopy images of 

the milled sample indicated the role of inter-particle surface contact in the spontaneous solid-

state reaction. Multivariate data analysis was used to find the optimum cooling crystallization 

conditions for obtaining co-crystals suitable for single crystal X-ray analysis.   
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Introduction 

Integrating solid-state reactions with crystallization techniques is an attractive means of 

adapting ‘Green Chemistry’ to industrial manufacturing, as one of the twelve principles of 

Green Chemistry is the reduction and/or possible removal of solvents from a chemical 

reaction.1,2 Solvent-free crystallization reduces waste, cost, environmental and health 

impacts, as well as batch to batch variation due to solvents sourced from different suppliers 

with different impurity profiles. Co-crystallization allows the combination of complementary 

drugs e.g. the combination of drugs known to cause nausea with anti-nausea drugs, into a 

single crystalline phase and the optimisation of chemical, physical, and pharmacological 

properties. 

Solid-state reactions are becoming a growing trend in organic synthesis.3 They often require 

relatively high energy inputs via manual grinding (mortar and pestle),4 high impact milling 

(mechanical rotational or oscillating milling),5  or continuous grinding (twin screw extrusion, 

hot melt extrusion).6 Recently, resonant acoustic mixing was shown to produce co-crystals 

under rather “soft” mixing conditions.7-10 On the other hand it is known that solids with a low 

vapour pressure can spontaneously undergo solid-state reactions forming salts, solvates, or 

co-crystals.11-14 Solid-state co-crystallization via manual grinding has been known for over a 

century. In 1893 Ling and Baker reacted an equimolar mixture of metadichloroquinone and 

metadichloroquinol to produce the metadichloroquinone-metadichloroquinol co-crystal.15 

Currently solid-state co-crystallization is routinely used in many fields of solid-state 

chemistry and pharmaceuticals.16 Recent work has shown the adoption of high impact milling 

as a method to screen for co-crystals and co-amorphous systems.17-19  

Spontaneous solid-state reactions can involve a chemical reaction or a change of the crystal 

structure.20,21 Spontaneous solid-state reactions are well documented where surface contact 

with a template or another solid form induces a solid-state transformation of the material. 

This phenomenon is well known for mono-component systems that transform to different 

polymorphs.22 Multi-component solid-state reactions can occur spontaneously when two 

different compounds come into contact and are most often observed as solvate or hydrate 

formation, but rarely as co-crystal formation.11-13,23 If the reaction is thermodynamically and 

kinetically favoured, spontaneous co-crystal formation can be induced by physically mixing 

stoichiometric ratios of the powdered co-formers. Ibrahim et al. monitored the effects of 

humidity when mixing samples of 2-methoxybenzamide and urea, and of caffeine and 



4 
 

malonic acid. Humidity was shown to increase the rate of co-crystallization in both cases and 

a minimum level of humidity was needed to induce the reaction.14 Maheshwari et al. used 

free energy calculations to predict thermodynamically favoured co-crystals of carbamazepine 

(carbamazepine–nicotinamide and carbamazepine–saccharin) and investigated the influence 

of the storage conditions on the spontaneous co-crystallization. They found that humidity and 

temperature play a role in co-crystal formation. A new co-crystal polymorph of 

carbamazepine–saccharin was produced from milled samples stored at high temperatures and 

humidity.23 Ervasti et al. investigated the effects of storage conditions, starting material 

particle size, and the use of anhydrous theophylline or its hydrate on the formation of 

theophylline and nicotinamide co-crystals.12 The rate of co-crystal formation increased with 

humidity, temperature, and particle size reduction. Using theophylline hydrate hindered the 

transformation to the co-crystal. Although all studies observe partial or almost complete 

transformation of powdered samples to the co-crystal at high temperature, no examples could 

be found of a system fully transforming to a co-crystal at ambient temperature and relatively 

low humidity.  

There are several possible mechanisms for spontaneous solid-state reactions including vapour 

diffusion, moisture sorption, sunken eutectic-liquid phases, amorphization, solid dispersion, 

and long range anisotropic molecular migration.24 Rastogi et al. and others attributed the 

spontaneous co-crystallization of naphthalene and picric acid to a vapour diffusion 

mechanism.25-29 Davey and coworkers investigated the co-crystallization of benzophenone 

and diphenylamine and observed a submerged eutectic temperature of 13.3 °C which allowed 

the spontaneous reaction of two particles at room temperature.30 Transient amorphous phases 

are well documented during grinding31-33 and milling-induced co-crystallization.34 Kaupp 

used atomic force microscopy to identify a topotactic reaction for a number of solid-state 

reactions.24  

This work investigates the co-crystallization of caffeine and urea via a spontaneous solid-

state reaction. Caffeine is a widely used additive in food and pharmaceuticals and has been 

shown to interact with urea in solution.35 Urea is well known to form supramolecular 

assemblies. These include the urea inclusion compounds with guest molecules occupying 

tunnels in the urea host structure36 and hydrogen-bonded co-crystals. Because of its special H 

bond donor and acceptor capabilities, a large number of urea co-crystals have been described, 

e.g. with carboxylic acids,37-46 amides,47 ,-dihydroxyalkanes,48-50 phenols51 and 

carbohydrates,52 various of which were obtained by mechanochemical techniques. Honer et 
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al., for example, reported the mechanochemical synthesis of urea ionic co-crystals with Mg 

and Ca salts53 and Casali et al. prepared two polymorphs of the ionic co-crystal 

urea.ZnCl2
.KCl by solution crystallization and mechanochemistry.54 Zhou et al. synthesized 

mechanochemically polymorphs of 1:2 co-crystals of urea with 1,6-dihydroxyhexane and 1,8-

dihydroxyoctane.48 In the present work an in-house mixer was designed to slowly mix the 

physical mixture of caffeine and urea, allowing particle-particle interactions with little 

external energy input. Infrared spectroscopy, X-ray diffraction, Raman microscopy, 

differential scanning calorimetry and scanning electron microscopy were used to monitor the 

solid-state reaction and to characterize the co-crystal obtained. Solution crystallization 

experiments were carried out in order to obtain single crystals for structure determination.  

Materials & Methods 

Materials  

Caffeine (≥ 99.0 %) and urea (≥ 98.0 %) were supplied by Sigma-Aldrich (Saint Louis, 

Missouri, USA). Acetonitrile (≥ 99.9 %) was purchased from Honeywell (Wabash, Indiana, 

USA). Diethyl ether (≥ 99.5 %), methanol (≥ 99.9 %), and ethyl acetate (≥ 99.5 %) were 

supplied by Merck (Kenilworth, New Jersey, USA). Acetone (≥ 99%) and ethanol (≥ 99 %) 

were supplied by Fisher (Pittsburgh, Pennsylvania, USA).  

Methods 

Solid-State Analysis 

IR spectra were recorded using a PerkinElmer Spectrum 400 (Waltham, Massachusetts) 

equipped with a DATR 1 bounce Diamond/ZnSe Universal ATR sampling accessory. Spectra 

were measured in the range from 4000 to 650 cm−1 with 8 accumulations and a resolution of 

4 cm−1.  

Thermal analysis was performed on a Rheometric Scientific STA625 thermal analyser 

(Piscataway, New Jersey) with a constant heating rate of 10 °C/min. The measurements were 

made in open aluminium crucibles, nitrogen was purged in ambient mode (40 mL/min) and 

calibration was performed using an indium standard. 

Raman microscopy was conducted using a Renishaw inVia confocal microscope with a ×50 

optical lens and the WiRE 3.4 software. Powdered samples were lightly dispersed manually 

on a glass slide using a spatula. Individual particles were focused and selected using a XYZ 

https://en.wikipedia.org/wiki/Kenilworth,_New_Jersey
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sample stage. Spectra were collected from 200 to 3200 cm−1 using 600/cm grating (785 nm 

laser at 10% power; 3 acquisitions, 3 s exposure time). 

In-situ SEM-Raman spectroscopy was performed on an inVIA Reflex micro-spectrometer 

(Renishaw, Wotton under Edge, UK) coupled to a DM2500 Leica microscope and a JSM-

6510LV SEM (JEOL) equipped with secondary electron (SE (high vacuum (HV)) and 

backscatter electron (BSE (low vacuum (LV)) detectors. The 785 nm excitation laser 

(diffraction grating groove density 1800 grooves/mm) was used throughout and instrument 

calibration was performed using the Si (100) peak (520.5 ± 1 cm−1) (50 objective, laser 

power 10 mW, acquisition time 10 s, 1 accumulation).   

SEM was performed by dispersing powder samples on carbon disks (Agar, Oxford 

Instruments) attached to SEM stubs, placed in an SEM stub holder and a montage of the 

whole stub collected using the optical microscope. Following inspection of the dispersed 

powders on the optical microscope a region of interest was selected and spectra collected by 

point mapping (20x objective, laser power 1 mW, acquisition time ≥ 10 s, ≥ 5 

accumulations).  In the SEM the region of interest was identified using optical images of the 

whole stub montage and the region of interest. The particles were then examined in BSE 

mode (3 - 5 kV, 10 - 20 Pa) and the co-ordinates of the particles of interest and images 

recorded. Following focussing of the Raman laser at each point of interest the acquisition 

time and the number of acquisitions for each spectrum was varied to improve the signal-to-

noise ratio (laser power 0.1 - 6 mW, acquisition time ≥ 30 secs, ≥ 5 accumulations), over a 

narrow spectral range of interest. Following spectral acquisition the samples were gold-

coated (SI50B, Edwards) and the particles of interest re-examined by SEM (JSM-6510LV 

(JEOL)) to obtain high resolution images of the position from which spectra had been 

collected.  

Single crystal X-ray diffraction was carried out on an Oxford Diffraction Xcalibur system 

(Oxfordshire, UK) at room temperature. The crystal structure was solved by direct methods 

using SHELXT and refined using SHELXL 2018/3 within the Oscail package.55-57 

Crystallographic data and details of refinement are reported in Table 1. The cif file can be 

obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html or from the Cambridge 

Crystallographic Data Centre, Cambridge, UK with the REF code 1935528. 

Powder X-ray diffraction (PXRD) patterns were collected on an Inel Equinox 3000 powder 

diffractometer (Artenay, France), fitted with a curved position sensitive detector calibrated 
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using Y2O3. Data were collected between 5 and 90° (2θ) using Cu Kα radiation (λ = 1.54178 

Å, 35 kV, 25 mA). Theoretical powder patterns were calculated using the Oscail software 

package.57  

Co-Crystallization 

Milling: 

1 g of an equimolar mixture of caffeine and urea was milled at room temperature using an 

oscillating ball mill (Mixer Mill MM400; Retsch GmbH, Haan, Germany) at 25 Hz in a 25 

mL stainless steel jar using a 15 mm stainless steel ball. After 30 min the milling was 

interrupted for 15 min to avoid overheating of the sample. The milling was continued for 

another 30 min so that the total milling time was 60 min. The sample was stored overnight at 

room temperature and 30 % relative humidity (RH). The formation of the co-crystal was 

confirmed by PXRD. 

To confirm the 1:1 interaction between the components 1:3 and 3:1 mixtures of caffeine and 

urea were milled at 25 Hz for 60 min (using the same procedure as above with a 15 min break 

after the first 30 min.), kept at room temperature for 1 d and analyzed by PXRD. 

Mixing using an in-house low energy mixer: 

Caffeine and urea (1 g each) were milled separately for 60 min. with a 15 min. break after the 

first 30 min interval. The milled caffeine and urea were mixed in a 1:1 molar ratio (1 g in 

total) in a 28 mL vial (60 mm height  20 mm diameter). The vial was attached to a bespoke 

low energy mixer designed to rotate at 50 rpm, 3 clockwise rotations followed by 3 counter 

clockwise rotations as previously described.58 The mixer was assembled using an Arduino 

Uno R2 single board microcontroller (Ivera, Italy) to control a stepped motor spinning the 

vial at a ca. 15º horizontal tilt.  

Mixing using a magnetic stirrer: 

1 g of a 1:1 mixture of caffeine and urea, individually milled as described above, was placed 

in a 10 mL glass vial. The sample was mixed at 100 rpm using a magnetic stirring plate and a 

8  3 mm stirring bar. Mixing was done at room temperature and <30% RH. 

Crystallization from solution: 

Under-saturated solutions of caffeine and urea (1:1 molar ratio) were prepared in duplicate 

using the following solvents; methanol, ethanol, isopropanol, water, acetonitrile, and ethyl 

acetate. The solutions were divided into two sample sets. One sample set was seeded with the 
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co-crystal prepared by milling and storage, the other was allowed to crystallize unseeded. 

Both sample sets were left to evaporate in a fume-hood at room temperature (22 – 26 °C). IR 

spectra of the powders/crystals were collected and processed using Principal Component 

Analysis (PCA) and Unscrambler 10.1 (CAMO) to find the optimum conditions for the 

crystallization of the caffeine-urea cocrystal. The IR spectra were pre-treated using Standard 

Normal Variate (SNV) transformation on ranges containing characteristic peaks of caffeine, 

urea and the co-crystal and were then processed by singular value decomposition PCA with 

seven latent variables. Solvents from which the co-crystal crystallized after evaporation were 

further investigated to grow X-ray suitable single crystals by cooling crystallization.  

A Thermo Fisher Scientific oven (UT 6420) coupled with a Heraeus (Thermicon P) 

temperature controller was used for controlled cooling crystallization. A solution containing 

600 mg of an equimolar caffeine and urea mixture in 15 mL of acetonitrile was held at 70 °C 

for 12 h, then cooled to 25 °C with temperature cycling over the course of several days.  

 

Results 

Caffeine-Urea Co-crystal Formation in Milled Samples 

An equimolar mixture of caffeine and urea was milled for 60 min. and the milled sample was 

analyzed by PXRD and IR spectroscopy (Figure 1). Immediately after milling peaks in the 

PXRD pattern match the peaks of commercial urea and caffeine, indicating that no new 

crystalline material was formed. Although there are no changes in peak position, changes in 

intensity are observed. The peaks of caffeine are slightly reduced, whereas all peaks 

associated with urea are reduced by a factor of five (Figure S1, SI). It is unlikely that 

preferred orientation effects are the reason for the intensity decrease, as preferred orientation 

would only affect certain peaks and not all. The loss of intensity is likely caused by a 

reduction in particle size and crystallinity during milling.59 Although no new crystalline 

material was detected immediately after milling, when the milled sample was stored at room 

temperature new peaks were observed at 8.64o, 10.82o, 13.89o, 24.30o, 25.08o, 25.46o, and 

28.07o (2θ) in the PXRD pattern. This new pattern was compared to the calculated patterns of 

the urea and caffeine structures reported in the CSD (Figure S2, SI) ruling out a simple 

polymorphic transformation. Instead the new peaks can be attributed to a spontaneous co-

crystal formation during storage as confirmed by comparing the experimental PXRD pattern 

with the simulated PXRD pattern calculated from the single crystal data of the urea-caffeine 
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co-crystal obtained by solution crystallization (see below). Figure 2 shows the change in the 

normalized peak heights of the caffeine peaks at 11.7 and 26.5 (2) and of the urea peak at 

22.7 (2) vs. storage time. 

The solid-state transformation during storage of milled caffeine and urea was also monitored 

using IR spectroscopy. Figure 1a shows the calculated spectrum of an equimolar physical 

mixture of caffeine and urea overlaid with the spectrum of caffeine and urea immediately 

after milling. Immediately after milling slight changes in the IR spectrum are seen. Most 

notably the caffeine (C=O) band at 1677 cm-1 is shifted to 1682 cm-1 and the urea s(N-H) 

band is shifted from 3341 cm-1 to 3335 cm-1 with a new shoulder at 3347 cm-1. When the 

milled sample is stored overnight at room temperature more significant changes are observed 

indicating changes in H-bonding interactions and the formation of the co-crystal. The 

caffeine (C=O) peak at 1682 cm-1 is shifted to 1707 cm-1 and the s(N-H) urea peak is 

shifted to 3185 cm-1. Similar, large shifts of ~200 cm-1 were reported for the s(N-H) band in 

other urea co-crystals.60 The spectrum also shows the convolution of several peaks 

throughout the spectrum and the appearance of a new peak at 809 cm-1 unique to the co-

crystal. The discrepancy between the IR and PXRD data of the samples analyzed directly 

after milling may be due to the fact that ATR-FTIR spectroscopy is a surface-biased 

technique. A Diamond/ ZnSe ATR-IR has a penetration depth of 1.66 μm, resulting in an 

overemphasis of changes on the particle surface.  

To investigate the co-crystallization of caffeine and urea further, mixtures of different 

stoichiometric ratios, 1:3 and 3:1, were milled for 60 min. and analyzed 24 h after preparation 

(Figure S3, SI). The PXRD patterns and IR spectra of both ratios show mixtures of the co-

crystal and excess starting material. This indicates a 1:1 interaction between caffeine and urea 

with no other transformation taking place. 

 

Mixing of Caffeine and Urea Using a Low Energy Mixer     

Caffeine and urea were milled separately for 60 min. at 25 Hz. No solid-state changes were 

observed after milling by IR spectroscopy or PXRD. The milled caffeine and urea were then 

mixed in a 1:1 molar ratio in an in-house low energy mixer58 at room temperature and <30 % 

relative humidity. Direct transformation of the caffeine and urea physical mixture to the co-

crystal was observed and monitored using IR spectroscopy (Figure 3). Transformation was 

detected within three days. Peaks specific to the co-crystal (1707 and 809 cm-1) as well as the 
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characteristic shift of the s(N-H) urea band to 3185 cm-1 were observed. At the same time 

the caffeine and urea bands at 1677 and 3341 cm-1 decreased in intensity. By contrast, when 

an equimolar mixture of un-milled caffeine and urea was mixed using the low energy mixer, 

a small broad peak at 809 cm-1 in the IR spectrum indicated the formation of only a small 

amount of the caffeine-urea co-crystal after 10 weeks (Figure S4, SI).  

More aggressive mixing of unmilled caffeine-urea using a magnetic stirrer increased the rate 

of transformation to the co-crystal when compared to the low energy mixing. IR and PXRD 

peaks characteristic to the co-crystal appeared within five weeks (Figure S5).  

Equimolar physical mixtures of separately milled caffeine and urea and of un-milled caffeine 

and urea were left without mixing as controls for two months. No changes were observed in 

the IR spectra or PXRD patterns.  

 

DSC Analysis 

Figure 4 compares the DSC thermograms of an equimolar physical mixture of caffeine and 

urea before milling, immediately after milling for 60 min. and after storing the milled sample 

for 24 h. Immediately after milling the caffeine-urea sample shows an exotherm at 91.3 °C 

and a sharp endotherm at 132.7 °C, slightly lower than the melting point of urea (135.3 °C). 

The former indicates the transformation into the co-crystal and the latter is assigned to the 

melting of the co-crystal. A melting endotherm at 132.7 °C is also observed in the 

thermogram of the caffeine-urea co-crystal prepared by cooling crystallization from 

acetonitrile (see below). After storing the milled sample for 24 h at room temperature the 

exotherm at 91.3 °C is no longer observed. This corroborates that the exotherm at 91.3 °C is 

due to the transformation of the caffeine-urea sample (still present as a physical mixture 

directly after milling) to the co-crystal. This transformation is not seen in the DSC plot of the 

un-milled physical mixture and this is due to the lack of contact between caffeine and urea 

particles in this sample (see SEM images discussed below).  

 

Crystal Growth and Single Crystal X-ray Structure 

Various solvents were investigated in order to obtain single crystals of the caffeine-urea co-

crystal; methanol (MeOH), ethanol (EtOH), water, acetone (Ace), acetonitrile (Atrn), ethyl 

acetate (EtA), and isopropanol (IPA). Undersaturated solutions of caffeine and urea (1:1) 
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were prepared in duplicate. One sample set was left to evaporate unseeded using each solvent 

(xxxx_U, where xxxx is the solvent and U indicates the sample was unseeded). The other 

sample set was seeded using the co-crystal prepared by milling and left to slowly evaporate at 

room temperature (xxxx_S, with S indicating seeding).  

Figure 5 shows the 3D PCA scores plot explaining 95 % of the information of the 3650 – 

2825 cm-1, 1755 – 1325 cm-1, and 940 – 750 cm-1 ranges of the SNV pre-processed IR spectra 

of the evaporated samples. Caffeine, urea, and the co-crystal are well separated, with most 

solvents (seeded and unseeded) giving mixtures of the starting materials and the co-crystal. 

From unseeded acetone solutions only the co-crystal crystallized, while seeding gave 

mixtures of the co-crystal, urea and caffeine which crystallized in different regions of the 

evaporation dish. Both seeded and unseeded crystallization from acetonitrile gave the pure 

co-crystal. Hence acetonitrile was chosen as the solvent to produce single crystals for X-ray 

analysis via cooling crystallization.  

Initial samples from cooling crystallization using acetonitrile produced thin, aggregated 

needles unsuitable for single crystal XRD. Because of this a slower cooling rate was used 

with temperature cycling at critical points of crystal growth where aggregation/agglomeration 

was expected. Cooling from 70 °C to 25 °C at a rate of ~0.3 °C h-1, with an increase of 1 °C 

followed by a decrease of 2 °C between 60 and 55 °C enabled crystal growth to the size and 

quality where single crystal XRD was feasible. 

The caffeine-urea cocrystals grew as needles extended along the c axis (Figure S6). In the 

crystal structure the caffeine molecules were disordered over two positions with 75 and 25 % 

occupancies. The principal component of the disorder is shown in Figure 6. The hydrogen 

bonding scheme has hydrogen bonded urea ladders running parallel to the c axis with the 

caffeine molecules hydrogen bonded to these chains, Figures 6b and 6c and Table S1. 

Adjacent chains along b have the hydrogen bonded caffeine molecules alternating in the vdW 

contact stacks along c. The crystal structure is well packed with a 69 % packing coefficient 

and the caffeine molecule stacking along c has 80 % of the atoms in each molecule in vdW 

contact with their stack neighbours. This vdW contact stacking is probably the reason for the 

needle growth along c.61 Figure S7 compares the experimental PXRD patterns of the co-

crystals formed spontaneously during storage of the milled mixture, the co-crystal isolated 

from solution and the theoretical pattern calculated from the single crystal data. All peaks 

align within 0.25 (2θ). The PXRD pattern of the sample crystallized from solution shows 
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preferred orientation effects. It would be interesting to see whether the co-crystals that were 

obtained by solid-state transformation of milled or low-energy mixed samples have the same 

disorder as the crystals formed in solution. However, the calculated PXRD patterns for the 

major and the minor component of the single-crystal structure are identical without any 

significant differences in the relative intensities (Figure S8) so that the experimental 

diffractograms of the mechanochemically prepared samples cannot give further insight into 

their disorder. 

 

Raman Microscopy and SEM 

Raman microscopy was performed on multiple regions of several crystals obtained by milling 

and storage. The spectra were compared with those of caffeine, urea, and the co-crystal 

produced by cooling crystallization (Figure 7). Raman spectra taken throughout the length of 

multiple crystals of the co-crystal have consistently peaks specific to the co-crystal at 1710.8, 

505.3, and 108.6 cm-1.  

SEM micrographs of the as-received and milled urea and caffeine samples confirmed that 

milling results in a reduction in the primary particle size as shown in Figure 8 (additional 

micrographs are included in the Supporting Information, Figure S9). Before milling the urea 

particles show no distinct particulate features and vary in the length of their longest axis 

between 200 and 800 µm, whereas particles of milled urea show a rough corrugated surface 

and are agglomerated particles of approximately 2 µm. The reduction in the primary particle 

size of the milled urea may explain why PXRD indicates a reduction in the relative 

crystallinity of the milled urea whereas no significant differences are observed in the IR 

spectra before and after milling. A comparison of the micrographs of unmilled and milled 

caffeine shows that the aggregated needle like caffeine particles of 5 – 30 µm size (Figure 8c) 

break up into aggregates of about half the size with thinner needles with higher aspect ratios 

(Figure 8d). 

SEM micrographs of the freshly milled caffeine and urea mixture (1:1) and of the mixture 

stored for one week allowing the transformation to the co-crystal are compared in Figures 8e 

and 8f. Immediately after milling the SEM images show larger particles (urea) engrained and 

covered by smaller and finer crystals (caffeine). These samples transformed to the co-crystal 

within hours. Aged samples had converted to needles of a fairly uniform size with a length of 

approximately 2 µm and an aspect ratio intermediary of that of the particles of the unmilled 
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and milled caffeine samples. It is proposed that the spontaneous co-crystal formation in the 

milled sample is due to surface effects induced by milling, as milled samples show direct 

contact of smaller caffeine particles spread over the surface of urea particles. By contrast, the 

SEM images of caffeine and urea milled separately and mixed using the low energy mixer 

revealed aggregates of caffeine needles assembled onto urea (Figure S10). 

 

Effects of Surface Contact on Co-Crystallization 

As described in the introduction, various mechanisms have been proposed for solid-state co-

crystallization. One of the mechanisms proposed for the spontaneous transformation of a 

physical mixture to a co-crystal is vapour diffusion of the two solids. However, this seems 

unlikely in this case. Caffeine and urea have vapour pressures of 9.0  10-7 mm Hg and 1.2  

10-5 mm Hg respectively,62,63 while in most spontaneous solid-state reactions that take place 

via vapour diffusion at least one solid has a vapour pressure in the 10-1 - 10-4 mm Hg range. A 

eutectic melt-mediated mechanism can also be excluded, as the thermal analysis of a physical 

caffeine-urea mixture did not show any endothermic event below 132.7 C. Grinding-induced 

defects and lattice distortions, i.e. mechanical activation, can play a role in milling-mediated 

solid-state transformations.64 Mechanical activation by milling the two components 

individually was also described for carbamazepine co-crystals with nicotinamide and 

saccharin.23 In addition, surface contact seems to be an important factor here as the effect on 

the rate of spontaneous co-crystallization is most prominent when caffeine and urea are 

milled together. These samples undergo the fastest transformation to the co-crystal on storage 

and the co-crystal formation can be observed in the DSC plot as an exothermic event at 91.3 

C. As seen in the SEM images immediately after milling, caffeine-urea samples contain 

small particles of caffeine ingrained onto urea particles giving tight particle-particle contact. 

Conversely, the transformation is slowest, when (un-milled) urea and caffeine are subjected 

to low energy mixing. This mixture has the largest particles and the least particle-particle 

surface contact. When caffeine and urea are pre-milled separately, the transformation rate 

under low energy mixing is increased compared to the un-milled physical mixture, as the 

larger surface-to-volume ratio leads to enhanced particle-particle surface contact during 

mixing. These observations are in agreement with the work by Ibrahim et al. who showed 

that the rate of spontaneous formation of the caffeine-malonic acid and urea-2-

methoxybenzamide co-crystals during low-energy convection mixing increased with 



14 
 

decreasing particle size of the pre-milled components.14 It was proposed that inter-particle 

contact and increase in contact areas are the main factors in the accelerated spontaneous co-

crystal formation. In our case the different co-crystallization kinetics suggest that while the 

particle size matters in the spontaneous co-crystallization of caffeine and urea, tight particle-

particle contact is more important in this system. 

 

Conclusions 

The formation of the 1:1 co-crystal of caffeine and urea readily occurs in the solid state. Little 

energy input is needed to transform a physical mixture of the two components to the co-

crystal at room temperature and <30% RH. Milling caffeine and urea together greatly 

increases the rate of co-crystallization during storage and this can be attributed to enhanced 

inter-particle surface contact.  
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Figure 1. (a) IR spectra and (b) PXRD patterns of urea (blue), caffeine (red), a physical 1:1 mixture of 

urea and caffeine immediately after milling (green), a physical 1:1 mixture of urea and caffeine after 

milling and storage for one week (black) and the calculated IR spectrum of a physical 1:1 mixture of 

urea and caffeine (yellow).  
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Figure 2. Transformation of caffeine and urea to the co-crystal during storage of milled 1:1 mixtures 

over time using PXRD. (a) Plot of the normalized peak heights of the caffeine peaks at 11.7 and 26.5 

 (2) and of the urea peak at 22.7  (2). (b) PXRD patterns after storage for 3 (black) and 80 (green) 

min. 
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Figure 3. Time-dependent changes in the 2850 – 3600 cm-1, 700 – 880 cm-1 and 1580 – 1740 cm-1 

ranges of the IR spectrum of a 1:1 mixture of separately pre-milled caffeine and urea during low 

energy mixing over 23 weeks (top). Increase of the intensity of the co-crystal peak at 3185 cm-1 from 

SNV treated data (bottom).  
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Figure 4. DSC plots of samples of caffeine (red), urea (blue), a 1:1 caffeine-urea mixture immediately 

after milling (green), a 1:1 caffeine-urea mixture after milling and storage for 24 h (black), and a 

physical mixture of (un-milled) caffeine and urea (yellow). 
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Figure 5. PCA scores plot of the IR spectra of caffeine-urea co-crystallization by solvent evaporation. 
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                     (a)                                                         (b)                                                               (c) 

 

Figure 6. (a) Asymmetric unit of the caffeine-urea co-crystal with the principal component of the 

caffeine disorder shown. (b) Hydrogen bonded urea chains running parallel to c with hydrogen 

bonded caffeine molecules and (c) urea chains and caffeine stacking along the c direction (H atoms 

not involved in H-bonding not drawn for clarity). 
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Figure 7. Raman microscopy spectrum of a single co-crystal (green), compared to spectra of caffeine 

(red) and urea (blue), and the spectrum of the co-crystal formed after milling and storage (black). 
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Figure 8. SEM images of urea and caffeine before and after milling (a-d) and milled 1:1 mixtures of 

caffeine and urea directly after milling (e) and after storage for one week at room temperature (f). 
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Table 1.   Crystal data of the urea-caffeine cocrystal.  
 

Formula C9H13N6O3 

Mr 253.25 

Crystal colour and habit colourless block 

Crystal size (mm) 0.50  0.40  0.20 

Crystal system monoclinic 

Space group P21/c 

Unit cell dimensions  

a [Å] 8.6741(8) 

b [Å] 20.421(2) 

c [Å] 7.1057(7) 

 [°] 110.300(10) 

V [Å3] 1180.5(2) 

Z 4 

Dcalc (g cm–3) 1.425 

No. measd. reflections 4786 

no. unique reflections (Rint) 2628 (0.0165) 

No. obs. reflections 1600 

Final R1, wR2 (obs. refl.) 0.1021, 0.2825 

Goodness-of-fit  (obs. refl.) 1.094 
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